

ALFA BK UNIVERSITY

Faculty of Mathematics and Computer Sciences

(ALFABK-FMCS)

STUDY PROGRAMME

Computer Science

DOCTORAL ACADEMIC STUDIES

Course:			
Course id:	Methods of Scientific Research		
Number of ECTS: 10			
Teacher:	Marija Paunović		
Course status:	Mandatory first year, first semester		
Precondition courses: There are no c	onditions, but knowledge from the subject	Research Methods from	
the Master Academic Studies is desirabl	е.		
Educational goal			
Adoption of theoretical knowledge and	d algorithmic approaches in the implemen	tation of the process of	
scientific research, as well as in the app	plication of scientific research methods in (non) technical scientific	
fields. To enable students for successful	writing of scientific papers and doctoral dis	sertations.	
Educational outcomes (acquired kno	wledge):		
- Ability to identify the task of	independent research, set research goals	, initial hypotheses and	
scientific methods			
 Ability of understanding variou 	s scientific methods witch was used in scien	itific literature	
- Ability of successful writing of s	scientific paper in area of interests		
- Ability of successful creating an	id ending of doctoral dissertation.		
Course content/structure			
1 On the nation of action tific reasonship	and Improved a days. Algorithms of mothed a sur	l to shui su os of uosooush	
1. On the nature of scientific research a	and knowledge: Algorithms of methods and	i techniques of research	
WOIK.	analysis, Eundamontal works in a scient	ific field up to modern	
2. General characteristics of interature	analysis: Fundamental works in a scient.	inc neid, up to modern	
2 Scientific statements and scientific an	gumente: Methodological acrosses		
A Algorithms of mothods and technique	guillents: Methodological aspects.	tting the solution of the	
4. Algorithms of methods and techniqu	es of analysis of (non) numerical data in se	sting the solution of the	
5 Basics of statistical procedures of scie	ontific analysis of experimental data		
6 Writing a scientific paper. Structure	content composition conclusion references		
7 Subject and problem of research res	earch hypotheses scientific method and res	search goals in the work	
on the doctoral dissertation: Critical re	wiew of known solutions comparative ana	lysis of used algorithms	
and crystal clear conclusions in the pres	centation of research results	lysis of used algorithms	
and crystal clear conclusions in the pre-	citation of rescaren results.		
Literature			
J.Richie and J.Lewis, Qualitative Researc	h Practice, Sage Publications, 2003.		
o A Strauss and LCorbin. Basics of Qualitative Research Groundid Theory Procedures and			
Techniques, Sage Publications, 1999.			
o The New Guide To Writing Research Papers (1999) Monroe Community Colege, Retrieved February 1,			
2004, from http://www.monroecc.edu/depts/library/cover.htm.			
o G. Post and D. Anderson, Management Information Systems, Solving Business			
Problems with Information Technology, New York:McGraw-Hill, 2003.			
o The Harvard Style of referencing published material, Including electronic information (2004) [Internet],			
Learning Support Services, Leeds Metropolitan University, 4th edition, July, Retrieved December 12, 2004,			
from http://www.leedsmet.ac.uk/lskills.			
Number of active teaching classesLectures: 3Study research work: 3			
Teaching methods			
Lectures. Consultations with students. Home work. Seminar paper.			
Knowledge evaluation (maximum 100 points)			
Seminar paper 50 points and oral exam with defence of seminar paper 50 points.			

Course:			
Course id:	Machine	learning	
Number of ECTS: 10			
Teacher:	Dejan Đukić		
Course status:	Mandatory, first year, first semester	•	
Precondition courses: There are no requ	uirements, but knowledge from the	subjects Artificial Intelligence and	
Computer Vision from Basic Academic St	udies is desirable.		
Educational goal			
The aim of the course is to present method	s for processing data sets that are large	ge, noisy, and multidimensional, for	
example: support vector network method	, recursive method of majority deci	sion-making (boosting), method of	
content distribution model (general mixtur	e model), methods statistical regress	ion and linear discriminants (LDA),	
nonlinear regression methods, probabilistic	c-Bayesian methods, etc.		
Educational outcomes (acquired knowle	dge):		
Upon successful completion of the course	e, the student will be able to: 1.choo	ose a machine learning method that	
corresponds to a given problem, 2. design	and apply a machine learning method	l for data processing, 3. evaluate the	
success or performance of the chosen mach	nine learning method.		
Course content/structure			
Theory classes:			
Vector spaces, dimensionality, functions,	mappings, projections; differential a	and difference equations; statistical	
interpolation methods, optimization of m	odel parameters; support vector net	work method, recursive method of	
majority decision-making (boosting), m	ethod of content distribution (gen	eral mixture model), methods of	
statistical regression and linear discriminants (LDA), methods of nonlinear regression, probabilistic-Bayesian			
methods of discrimination; shape recognition.			
Practical classes:			
Computational exercises. Laboratory exerc	cises. Research project.		
Literature			
• Vapnik V.: The Nature of Statistical Learning Theory (Information Science and Statistics) Springer; 2nd edition, 1999.			
 Dayan & Abbott : Theoretical Ne 	• Dayan & Abbott : Theoretical Neuroscience, MIT Press 2001.		
• David J. C. MacKay : Information Theory, Inference and Learning Algorithms : Cambridge University			
Press, 2003.			
• Trevor Hastie, Robert Tibshirani	, Jerome Friedman : The Elements of	Statistical Learning: Data Mining,	
Inference, and Prediction : Springer; 2nd ed. 2009.			
Number of active teaching classes (week	ly) Lectures: 3	Study research work: 4	
Teaching methods			
Lectures and / or mentoring, consultations, laboratory exercises, homework			
assignments, preparation of a seminar paper, research project.			
Knowledge evaluation (maximum 100 points)			
Final exam - 60 points, pre-exam obligations - 40 points (homework, seminar			
work, participation in projects).	· · · ·		

Course:			
Course id:	Cloud computing	and virtualization	
Number of ECTS: 10	-		
Teacher:	Aleksandar Zakić		
Course status:	Mandatory, first year, first semester		
Precondition courses: none			
Educational goal			
Introduction to concepts and techniques of	cloud computing application using v	irtualization and distributed process	
processing and data warehousing. Top	oics include virtualization, distribution	ited network storage, distributed	
computing, cloud models (IAAS, PAAS, a	nd SAAS), and cloud security.		
Educational outcomes (acquired knowle	dge):		
Understanding the major technologies ena	abled by cloud computing, including	virtualization, computer networks,	
distributed processing and storage, networ	k and data security, service-oriented	architecture, and web applications.	
By managing virtual machines. Understar	nding security challenges in applying	g and working with different cloud	
computing architectures.			
Course content/structure			
1. Basic concepts of cloud computing a	and virtualization 2. Virtualization	technologies 3. Cloud computing	
architecture 4. Development and programming of applications and services using cloud computing and			
virtualization 5. Different models of cloud computing services (IAAS, PAAS and SAAS)			
Literature			
 Dan C. Marinescu, Cloud Comup 	ting – Theory and Practice, 2018		
 Dac-Nhuong Le Raghvendra Kun 	nar Gia Nhu Nguyen Jyotir Moy Cha	tterjee, Cloud Computing and	
Virtualization, Scrivener Publishi	ng LLC, 2018		
Number of active teaching classes (weekly)Lectures: 4Study research work: 3			
Teaching methods			
Lectures and / or mentoring, consultations, laboratory exercises, homework			
assignments, preparation of seminar paper.			
Knowledge evaluation (maximum 100 points)			
Final exam - 60 points, pre-exam obligatio	ns - 40 points (homework, seminar		
work, participation in projects).			

Course:		
Course id:	Combinatorial al	gebra algorithms
Number of ECTS: 10		
Teacher:	Duško Bogdanić	
Course status:	Elective, first year, second semester	r
Precondition courses: none		
Educational goal		
The aim of this course is to introduce s	students to the basic combinatorial	algorithms for calculating various
algebraic invariants. During the course, we	e will study the design of these algorithm	ithms, efficiency and complexity, as
well as implementation in programming la	nguages.	
Educational outcomes (acquired knowle	dge):	
After attending the course, the student will	be ready to:	
 understands basic concepts related 	l to discrete structures of modern alg	ebra,
 gets acquainted with classical algorithm 	orithms for calculating various invari	ants of algebraic structures,
 understands the complexity of cla 	ssical combinatorial algorithms,	
 designs and implements combinat 	orial algorithms,	
• applies learned concepts in other	areas of science and industry.	
Course content/structure	· · · · · · · · · · · · · · · · · · ·	
Discrete algebraic structures, algorithms for	or computing with matrices, optimized	ation of algorithms in special cases,
algorithms for symmetric group representations, basics of GAP and MAGMA software systems.		
Literature		S
• K. Geddes, S. Czapor, G. Labahn, Algorithms for Computer Algebra, Springer, 1992.		
• J. Gathen, J. Gerhard, Modern Computer Algebra, Cambridge University Press, 2013.		
• GAP manuals, <u>https://www.gap-s</u>	ystem.org/Doc/manuals.ntml	<u>S(1)</u> 1
Number of active teaching classes (week	Iy) Lectures: 2	Study research work: 2
Teaching methods		
Classes are conducted through lectures and / or mentoring, consultations, seminars, study and research work.		
Within the study and research work, complex tasks are solved, so that the candidates can understand the given		
material, which they could later apply in practice. Special attention is paid to the implementation of algorithms in		
GAP and MAGMA software packages.		
Knowledge evaluation (maximum 100 points)		
Research work: 40; Oral exam: 60 points.		

Course:		
Course id:	Logic in computing	
Number of ECTS: 10	Lögic in computing	
Teacher:	Dragiša Žunić	
Course status:	Elective, first year, second semester	
Precondition courses: none		
Educational goal		
Acquisition of advanced knowledge of fo	rmal logic, logical concepts as the basis of fundamental informatics, as	
well as initial involvement in scientific res	earch.	
Educational outcomes (acquired knowle	edge):	
Knowledge of basic concepts and results f	from mathematical logic, development of abstract thinking in the context	
of logic as the basis of some basic aspects	of informatics. Involvement in	
Course content/structure	/ · · · · · · · · · · · · · · · · · · ·	
1. Basic concepts and basic logics (classical, intuitionistic, linear).	
2. Formalisms for representing log	gics, and formal systems of corresponding logics (statement calculus,	
predicate calculus)		
5. Axiomatic system (Hilbert), natur	rai deduction calculus and sequential calculus (Gencen, Pravic)	
4. Computational interpretations of	United calculations. Accounts without types	
5. Basic accounts with types; Curry Howard correspondence (formulas-types, proofs-terms, normalization-		
calculation)		
6. Basic concepts from the semantics of logical systems.		
Literature		
• B. Pierce. Types and programmin	ng languages, MIT Press, 2002.	
 D. Fletce, Types and programming languages, MTTTTess, 2002. Z. Ognianović i S. Gilezan, Uvod u teorijsko računarstvo. Fakultet Tehničkih Nauka, Novi Sad. 2014. 		
 Z. Ogljulović i S. Gliezali, ovod u teorijsko računarstvo, i akutet reiniekli račuka, rovi Sad, 2014. Z. Petrić Uvod u matematičku logiku (skrinta) Matematički Institut SANU 2016 		
• R. Harper. Practical foundations	for programming languages. Cambridge University Press, 2016.	
 J. Y. Girard, Linear logic, in Theoretical Computer Science Volume 50, Issue 1, 1987, Pages 1-101. 		
Number of active teaching classes (weekly) Lectures: 3 Study research work: 3		
Teaching methods		
The lectures present the theoretical part	of the material, followed by examples for easier understanding. Where	
possible, practical implementation is demonstrated as an additional illustration. The student independently studies		
a part of the literature (research), which he discusses with the teacher at the consultations.		
Knowledge evaluation (maximum 100 points)		
Final exam - 60 points, pre-exam obligation	ons - 40 points (homework, seminar	
work, participation in projects).	• • •	
• •		

Course:				
Course id.	Selected Chapte	ers in Coding Theory		
Number of ECTS: 10				
Teacher:	Ivan D. Pavkov			
Course status:	Elective			
Precondition courses: None				
Educational goal				
Acquisition of advanced knowledge of information principles of coding and decoding.	and coding theory in c	communication systems and		
Educational outcomes (acquired knowledge):				
Upon completion of the course, students are capable to understand the professional and scientific literature in which information theory and coding are studied and are able to make a personal contribution to the investigation of this subject.				
Course content/structure				
Motivation and history of coding theory. Basic concepts of coding theory. The concept of communication channel. Noisy communication channel. The notion of redundancy. Shannon communication system (encoder, communication channel, decoder). Properties of code function. Block codes. Code space. Code length. Codeword. Distance of codewords. Good code. Shannon's theorem on the existence of good code. Linear codes. Distance of codewords of linear code. Construction of linear codes. Linear code generator matrix. Coding of linear codes. Decoding of linear codes. Dual and self-dual code. Syndromic decoding. Hamming code. Encoding and decoding of Hamming codes. Cyclic codes, definition and properties. Decoding of cyclic codes. Reed-Solomon codes. Decoding of some classes of Reed-Solomon codes using factorization of bivariate polynomials.				
 Literature Hall J. I. (2010), <i>Notes on Coding Theory</i>, Department of Mathematics Michigan State University Huffman W. C., Pless V. (2003), <i>Fundametals of Error Correcting Codes</i>, Cambridge University Press, New York van Lint J. H. (1992), <i>Introduction to Coding Theory</i>, Springer-Verlag Berlin Heidelberg 				
Number of active teaching classes (weekly)	Number of active teaching classes (weekly)Lectures: 4Practical classes: 3			
Teaching methods Classes are conducted frontally, realized through lectures and mentoring, consultations and study and research work.				
Knowledge evaluation (maximum 100 points)				
Pre-examination obligations: 40; Final exam: 60.				

Course:			
Course id:	Applied group theory		
Number of ECTS: 6			
Teacher:	Duško Bogdanić		
Course status:	Elective, first year, second semes	ter	
Precondition courses: Mathematical know	vledge from the previous level of s	tudy	
 Educational goal The aim of the course is to acquaint students with various applications of modern group theory, from application in cryptography / computing, to application in the study of the phenomenon of symmetry in chemistry. As part of this course, GAP and MAGMA software packages for solving computational problems in group theory will be covered. Special attention will be paid to problems from group theory that originate from cryptography. Educational outcomes (acquired knowledge): After attending the course, the student will be ready to: understands basic concepts and methods from classical group theory, to get acquainted with the applications of groups in cryptography (eg to understand the basic applications in asymmetric cryptography), to get acquainted with the applications of groups in solving the problem of classification of crystal structure in chemistry, to master the basic and advanced concepts of GAP and MAGMA software packages, to be able to develop advanced programs for computing various invariants of finite groups. 			
Course content/structure Basic concepts and methods of group theory, basic cryptographic algorithms based on factorization of natural numbers, symmetric groups and their application in chemistry (crystal structure), software packages GAP and MAGMA.			
Literature			
 J. Rose, A Course on Group Theory, Cambridge University Press, 2012. J. Buchmann, Introduction to Cryptography, Springer, 2013. D. Bishop, Group Theory and Chemistry, The Clarendon Press, Oxford, 1993. 			
Number of active teaching classes (weekly)Lectures: 4Study research work: 3			
Teaching methods Classes are conducted through lectures and / or mentoring, consultations, seminars, study and research work. Within the study and research work, complex tasks are solved, so that the candidates can understand the given material, which they could later apply in practice. Special attention is paid to solving examples from cryptography. Knowledge evaluation (maximum 100 points) Research work: 40: Oral exam: 60 points			

Course:	Logical frameworks, modeling and reasoning about	
Course id:	systems	
Number of ECTS: 10		
Teacher:	Dragisa Zunic	
Course status:	Elective, first year, second semester	
Precondition courses: none		
Educational goal		
Acquisition of fundamental knowledge in	the domain of formal reasoning. Ability to model the system using	
logical formal systems, which at the same	time allow reasoning about the properties of the observed object system.	
Developing abstract thinking in the comple	ex domain of formal reasoning.	
Educational outcomes (acquired knowle	dge): Is found to invest found to see the standard statistics in the	
Knowledge of relevant concepts and resu	its from logic and formal reasoning; developed abstract thinking in the	
context of automatic reasoning and verific	cation, the admity to model simpler systems, as well as reasoning about	
them. Initial involvement in scientific resea	arcn.	
Course content/structure		
1. Introduction and basic terms and (concepts.	
2. Formalisms and formal systems.	accurt Tautology satisfaction SAT Normal forms DDLL procedure	
5. Reasoning in the statement of a	count. Tautology, satisfaction, SAT. Normal forms, DFLL procedure.	
4 Predicate calculus Passilution de	II.	
4. Predicate calculus. Resolution, determination. SM1.		
5. Logical frameworks. LF, LLF and CLF. All-calculus. Linear logic.		
6. Interactive proof of the theorem Coq. Calculus of constructions. Evident Abella. G logic.		
Literature		
• J. Harrison, Hadbook of practical	logic and automated reasoning, Cambridge Univ. Press, 2009.	
• F. Pfeenning, Logical frameworks, in Handbook of automated reasoning, pp.1063–1147, 2001.		
• I. Cervesato, Logical frameworks - why not just classical logic? (online) 1999.		
• P. Janičić, Matematička logika u računarstvu, Matematički Fakultet u Beogradu, 2007.		
• R. Harper, Practical foundations f	or programming languages, Cambridge University Press, 2016.	
• F. Marić, Automatsko rezonovanje (beleške), Matematički Fakultet Beograd, 2018.		
Number of active teaching classes (week	ly) Lectures: Study research work: 3	
Teaching methods		
The lectures present the theoretical part of	f the material, followed by examples with the appropriate application of	
software. The student independently studie	es parts of literature and research, which he discusses with the teacher in	
consultations.		
Knowledge evaluation (maximum 100 points)		
Final exam - 60 points, pre-exam obligatio	ns - 40 points (homework, seminar	
work, participation in projects).		

Course:			
Course id:	Algebraic p	rogramming	
Number of ECTS: 10	8 I		
Teacher:	Duško Bogdanić		
Course status:	Elective, first year, first semester		
Precondition courses: none			
Educational goal			
By symbolic computation we mean the p	art of mathematics and computing	that deals with the development of	
algorithms and software for manipulating	mathematical objects that can be ade	equately represented on a computer.	
The aim of this course is to introduce stu	dents to the software packages GAI	P and MAGMA, computer systems	
designed to solve the problem of symbol	lic computing in the field of algebr	a, numerical mathematics, number	
theory and other branches of mathematics	and computing, and their application.		
Educational outcomes (acquired knowle	dge):		
After attending the course, the student will	be ready to:		
• learn advanced concepts of GAP	and MAGMA software packages,		
 get acquainted with other available 	e systems for symbolic calculation,		
 develops software for advanced system 	ymbolic calculations,		
 analyzes the complexity of symbol 	olic computation algorithms.		
Course content/structure			
Algebraic programming algorithms, basic	libraries of the GAP software syste	em, basic libraries of the MAGMA	
software system, computer representatio	ns of mathematical objects. Devel	opment of software for advanced	
symbolic calculations. Analysis of the com	plexity of symbolic computation algo	orithms.	
Literature			
• J. Gathen, J. Gerhard, Modern Co	mputer Algebra, Cambridge Universit	ity Press, 2013.	
• J.S. Cohen, Computer Algebra an	d Symbolic Computation: Elementar	y Algorithms, CRC Press, 2003.	
• GAP manuals, https://www.gap-system.org/Doc/manuals.html			
•			
Number of active teaching classes (weekly) Lectures: 2 Study research work: 2			
Teaching methods			
Classes are conducted through lectures and / or mentoring, consultations, seminars, study and research work.			
Within the study and research work, complex tasks are solved, so that the candidates can understand the given			
material, which they could later apply in practice. Special attention is paid to the development of algorithms and			
software in commercial systems for symbolic computing.			
Knowledge evaluation (maximum 100 points)			
Research work: 40; Oral exam: 60 points			
1			

Course:			
Course id:		Intelligent tut	toring systems
Number of ECTS: 10		_	
Teacher:	Bob	an Vesin	
Course status:	Elec	tive, second year, third semeste	er
Precondition courses: none			
Educational goal The course focuses on the challenges and opportunities arising from the introduction of technologies in learning and teaching, assuming that the technologically rich context of learning and teaching is qualitatively different from that without technologies. The course will focus on the design of technologies for innovative learning practices. Educational outcomes (acquired knowledge): The main goal of the course is to train doctoral students in the field of technology enhanced learning (TEL). Students are expected to gain advanced knowledge of the state of the techniques used in TEL, in terms of theories, methods and technology. At the end of the course, students are expected to be able to apply the acquired knowledge in the analysis of user needs in formal and informal learning settings and in the design of new technologies. It will also develop the competencies needed to participate in and establish research in the field. Course content/structure Learning and lecturing with advanced technologies, learning contexts, intelligent tutoring systems, cognitive tools, meta-cognitive tools, student knowledge assessment methodologies, personalization and adaptation in distance			
learning, the use of artificial intelligence to	chniq	ues in the teaching process.	
Literature	-	~ ~ ~	
 Klašnja-Milićević, A., Vesin, B., Ivanović, M., Budimac, Z. Jain, L.C., E-learning systems: Intelligent techniques for personalization (Vol. 112). Springer. 2016 Bower, M., Design of technology-enhanced learning: Integrating research and practice. Emerald Group Publishing. 2017. Lajoie, S.P. and Azevedo, R., Teaching and learning in technology-rich environments. Informa UK Limited. 2017. 			
Number of active teaching classes (week	ly)	Lectures: 3	Practical classes: 3
Teaching methods Classes are conducted through lectures and / or mentoring, consultations, seminars, study and research work. Within the study and research work, complex tasks are solved, so that the candidates can understand the given material, which they could later apply in practice. Special attention is paid to solving real examples from business practice, where modelling is performed using appropriate software tools.			
Enowieuge evaluation (maximum 100 points)			
Research work: 40; Oral exam: 60 points			

Course:		
Course id:	Fuzzy logic and fuzzy systems	
Number of ECTS: 10		
Teacher:	Marija Paunović	
Course status:	Elective, second year, third semester	
Precondition courses: None		
Educational goal Enabling students to develop abstract thinking and acquire advanced knowledge related to the selected area within the methods and techniques for modelling uncertainty, imprecision and vagueness. Depending on the orientation of the candidate and the narrow scientific field that will be the subject of the doctoral dissertation, different methodological concepts will be considered, which will be the basis for scientific		
Educational outcomes (acquired knowledge): Gaining knowledge about the possibilities of applying methods and fuzzy techniques in solving real problems in engineering and managerial practice and master the appropriate skills using selected modelling approach and available software tools in building a complex management system based on fuzzy logic.		
Course content/structure Fuzzy and ordinary sets. Fuzzy arithmetic. Approximate reasoning. Uncertainty measures. Fuzzy systems. Fuzzy Databases. Fuzzy shape recognition, Fuzzy clustering. Neuro-fuzzy systems. Decision theory. Engineering applications. Applications of fuzzy systems in other disciplines. Practical classes: Modelling uncertainty. Determining membership functions. Using a computer-fuzzy toolbox. Part of the course is conducted through independent study research work, which includes active monitoring of primary scientific sources, organization and performance of experiments and statistical data processing, numerical simulations writing namers in the field		
Literature J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic – Theory and Applications, Prentice Hall, 1995. R. R. Yager, D. Filev, Essential of Fuzzy Modelling and Control, Wiley, 1994 E. Cox, The Fuzzy Systems Handbook, Academic Press, London, 1994. Grabisch M., Nguyen H. Walker E. A. Fundamentals of Uncertainty Calculi with Application to Fuzzy Inference, KluwerAcademicPublishers, Dordrecht-Boston-London, 1995.		
Number of active teaching classes	Lectures: 3 Study research work: 3	
Teaching methodsTeaching is performed through lectures and / or mentoring, consultations, seminars, study and researchwork. Within the study and research work, complex tasks will be solved, which they could later apply.Special attention is dedicated to solving real problems from business practice, where modelling isperformed using appropriate software tools.Knowledge evaluation (maximum 100 points)		
Research and study work: 40; Oral exam: 60 points		

Course:			
Course id:	Direct search optimization		
Number of ECTS: 10			
Teacher:	Milena V. Radenković		
Course status:	Elective, second year, third semeste	r	
Precondition courses: none			
Educational goal			
Introduction to the class of zero-order opti	mization methods that does not requi	re product information and does not	
construct an approximate model of the op	timality criterion, ie show that in nu	merical optimization the algorithms	
of the direct search method are only function	ons for ranking the countable set of c	riterion values.	
Educational outcomes (acquired knowle	dge):		
Possibility of successful application in v	arious theoretical and applied analy	vses and optimization of nonlinear	
models of functions in the description of	systems of various physical charac	teristics, economic, organizational,	
business, information, technical,, i.e. such	ccess of application to optimization p	roblems with non-smooth functions	
that are often encountered in experimental	analysis and design of diverse (non)	technical systems.	
Course content/structure			
1. Linear search, non-gradient and g	radient methods.		
2. Pattern methods of direct searc	h, coordinate method, method with	positive spanning sets of search	
directions in the conditions of fulfilment of global mechanisms based on the application of the criteria of			
sufficient decline.			
3. Simplex direct search methods, matrix model of Nelder-Mead method in theory and application.			
4. Multidirectional search method.			
5. Optimization of nonlinear function models, Software solutions.			
Literature	Literature		
• J.E.Dennis and R.B.Schnabel, Nu	merical Methods for Unconstrained	Optimization and Nonlinear	
Equations, SIAM, Philadelphia, 1996.			
• J.Nocedal and S.J.Wright, Numerical Optimization, Springer, 2006.			
• E.Polak, Computational Methods in Optimization, A Unified Approach, Academic Press, New York,			
1971.			
Number of active teaching classes	Lectures: 4	Study research work: 3	
Teaching methods			
Lectures and / or mentoring, consultations, laboratory exercises, homework			
assignments, preparation of seminar paper, participation in projects.			
Knowledge evaluation (maximum 100 points)			
Final exam - 60 points, pre - exam obligations - 40 points (homework, seminar			
work, participation in projects).			

Course:	
Course id:	Computer modeling of natural and technical processes
Number of ECTS: 10	
Teacher:	Goran Keković
Course status:	Elective, second year, third semester
Precondition courses: none	

Educational goal

The aim of the course is to acquaint doctoral students with the applications of linear algebra, differential equations, probabilities and statistics, for the production of mathematical models of physical and technical processes in a broader sense and the adoption of methods for identifying parameters of linear and nonlinear models; as well as basic methods of working with stochastic processes, and with systems that depend on random events.

Educational outcomes (acquired knowledge):

Upon successful completion of the course, the doctoral student will be able to: 1. based on numerical data and time series to assess the type and order of models of a given physical process, 2. determine the structure of the model, 3. identify the parameters of the model or otherwise optimize the model; 4. write a program to simulate a given physical process.

- determine the structure of the model
- from the measured data identifies the parameters of the model or otherwise optimizes the model
- writes a program for simulation of a given physical process

Course content/structure

Theoretical classes:

Theory of dynamical systems, differential and differential equations, hysteresis dynamics; Linear and nonlinear dynamical systems; Physical and numerical models of dynamical systems; stochastic systems; model parameterization; random event processes, queuing systems; statistical identification and parameter optimization; process simulation. Areas of application in engineering: CAD, CAM systems, modelling in biotechnology and medicine.

Practical classes:

Computational exercises. Laboratory exercises. Research project.

Literature

- .Richard Durrett : Essentials of stochastic processes, 2nd ed. Springer, 2012.
- Tokunbo Ogunfunmi : Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches, Springer; 2007.
- Shapiro, V. Solid modeling, Elsevier, 2001.
- Hatcher, A. Algebraic topology, Cambridge university, 2002.

Number of active teaching classes Lectures: 4

Teaching methods

Lectures and / or mentoring, consultations, laboratory exercises, preparation of seminar papers, development and defence of research projects.

Knowledge evaluation (maximum 100 points)

Final exam - 60 points, pre - exam obligations - 40 points (seminar work, participation in projects).

Study research work: 3

Course id:	
Number of ECTS: 10	
Teacher:	Boban Vesin
Course status:	Elective, second year, third semester
Dreagendition courses none	

Precondition courses: none

Educational goal

Classical approaches in data analysis are based on a static (or predefined) procedure for collecting and processing data. Modern approaches deal with adaptive methods that are almost always used in practice. The aim of the course is for students to learn how to design systems that adaptively collect and process data in order to make decisions independently or in cooperation with people. The course applies basic principles from machine learning, artificial intelligence, databases and parallel processing to real problems in security, personalization, forecasting, transparency and privacy.

Educational outcomes (acquired knowledge):

After attending the course, the student will be ready to:

- understand adaptive data analysis, as well as identify general problems in decision making.
- uses the SQL query language
- plans adaptive data collection.
- identifies software security issues and how to troubleshoot them.
- be able to provide guarantees of safety and reliability.
- addresses issues of discrimination and fairness that may arise.
- uses large-scale data processing tools such as Tensor-flow
- solves problems with extremities, as well as with incomplete and / or unprocessed data.

Course content/structure

Decision problems, adaptive systems, privacy, neural networks, graphical models, referral generation systems, big data, genetic algorithms, Bayesian network.

Literature

- Dimitrakakis, C. Ortner, R., Decision making under uncertainty and reinforcement learning.
- Chalmers University of Technology, 2018.
- Dwork, C. and Roth, A., The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science, 2014
- Klašnja-Milićević, A., Vesin, B., Ivanović, M., Budimac, Z. and Jain, L.C., E-learning systems: Intelligent techniques for personalization (Vol. 112). Springer. 2016

8 1 1		
Number of active teaching classes	Lectures: 4	Practical classes: 3

Teaching methods

Classes are conducted through lectures and / or mentoring, consultations, seminars, study and research work. Within the study and research work, complex tasks are solved, so that the candidates can understand the given material, which they could later apply in practice. Special attention is paid to solving real examples from business practice, where modelling is performed using appropriate software tools.

Knowledge evaluation (maximum 100 points)

Research work: 40; Oral exam: 60 points

Course:		
Course id:	Decision sup	port systems
Number of ECTS: 10		
Teacher:	Marija Paunović	
Course status:	Elective, second year, third semes	ter
Precondition courses: None		
Educational goal		
Advanced knowledge related to mo	dern disciplines and methods th	nat deal with decision-making.
Depending on the orientation of the car	ndidate and the narrow scientific fi	eld that will be the subject of the
doctoral dissertation, different method	lological concepts will be conside	red, which will be the basis for
further scientific research.		
Educational outcomes (acquired kno	wledge):	
Student is familiar with a number of in	nportant methods, models and tec	hniques in the field of decision-
making and have knowledge in the res	earch areas of decision-making for	r further scientific research. The
student has mastered software tools to	support decision making.	
Course content/structure		
Introduction to decision theory, Decision making process. Aspects of probability and statistics in decision		
theory. Aspect of fuzzy logic and system in decision theory. Decision tree technique. Utility theory. Game		
theory. Multi-altributive utility. Multici	lenmont of decision support and	s. Group decision making. Delphi
technique. Technologies for the development of decision support systems. Optimization models for		
decision making. Application of artificial intelligence in decision support systems. Expert systems. Patterns		
Literature		
1 Oudrat-IIIIah H Spector IM Davidse	n P Complex Decision Making. The	pory and Practice Springer 2010
1. Quurat-Ollall, H, Spector, J.M, Daviusell, P. Complex Decision Making: Theory and Practice, Springer, 2010		
2. Multy K. Optimization models for decision making, Springer-Verlag 05, 2010		
York 2008		
4 Павличић Л Теорија одлучивања ЦИЛ Економски факултет Београд 2004		
5 Adam F Humphreys P Encyclonedia of decision making and decision support technologiec Information		
Science Reference, 2008	5	FF
Number of active teaching classes	Lectures: 4	Study research work: 3
Teaching methods	·	¥
Teaching is performed through lectures and / or mentoring, consultations, seminars, study and research		
work. Within the study and research work, complex tasks will be solved, which they could later apply.		
Special attention is dedicated to solving real problems from business practice, where modelling is		
performed using appropriate software tools.		
Knowledge evaluation (maximum 100 points)		
Research and study work: 40; Oral exam: 60 points		

Course:	Study research work on the preparation of the	
Course id:	A coordian nonen for the Dectarol discortediar	
Number of ECTS: 10	Accession paper for the Doctoral dissertation	
Teacher:	Mentor	
Course status:	Mandatory, second year, fourth semester	
Precondition courses: 90 ECTS		
Educational goal		
Preparing students for independent scientific research work on the preparation of the approach paper, as well as on		
the future preparation of the doctoral dis	sertation. With the help of a mentor, the student observes, presents the	
methodology and solves a specific curre	ent problem with scientific research methods, with the application of	
theoretical and applied knowledge acquire	d during the study.	
Educational outcomes (acquired knowle	edge):	
Successful first steps have been taken in	training students for independent scientific research work in the elective	
field: It can analyze the available and available scientific literature and can give a comparative overview of known		
solutions, with their advantages and disadvantages. Can present initial hypotheses, list basic research methods and		
describe the form of expected scientific contribution and expected scientific results. Preliminary analysis should		
imply the student's ability to make significant scientific contributions in the field of study in the course of		
independent research.		
Course content/structure		
With the support of the mentor, the student uses the acquired knowledge, but still studies and researches the		
selected scientific field, the content of w	hich depends on the specifically considered problem. The paper should	
show that the student has extensive knowledge and understanding of the problems in the part of the study area that		
he studied in doctoral studies, so that based on a broader overview of references will give a comprehensive analysis		
of observed research tasks in a given field, as well as known ways to solve these problems. Based on a critical		
review of known solutions, the student should identify the task of independent research, set goals, initial		
hypotheses and scientific methods used, explain their choice and present the results of their research, for example,		
modification of known algorithm, approach, model and / or method., a new algorithm, approach, comparative		
analysis of the used algorithms and clear conclusions about the advantages and disadvantages of each of them in		
solving the set scientific-research task.		
Literature The general share-staristic of literature analysis should be reflected in the systematic share-labitic large ach of		
I ne general characteristic of literature analysis should be reflected in the systematic chronological approach of		
field to contemporary results published in	leading international scientific journals other scientific journals	
conference proceedings, published doctors	al dissertations and books of textbook and / or monograph character	
Relevant reference literature should set the	- framework for the development of the considered scientific field is the	
framework for the current and future deve	lopment of the research field.	

Number of active teaching classes

Study research work: 10

Teaching methods

Consultations with the mentor in all phases of work, with active monitoring and study of new results of relevant scientific journals, conference proceedings, technical reports of faculties and institutes and doctoral dissertations of other authors in the considered field of research.

Knowledge evaluation (maximum 100 points)

Research work on the preparation of the Accession Paper for the Doctoral Dissertation 50 points. Active participation in the scientific gathering 50 points.

Course:	Preparation and defense of the Accession paper for the
Course Id:	doctoral dissertation
Number of EC18: 20	Montor
Course status:	Mendetory second year fourth semester
Procondition courses: 00 ECTS	Mandatory, second year, routin semester
Frecondulon courses: 90 EC15	
Preparing students for independent scientific research work on the preparation of the approach paper, as well as on the future preparation of the doctoral dissertation. With the help of a mentor, the student observes, presents the methodology and solves a specific current problem with scientific research methods, with the application of theoretical and applied knowledge acquired during the study. Educational outcomes (acquired knowledge): Successful first steps have been taken in training students for independent scientific research work in the elective field: It can analyse the available and available scientific literature and can give a comparative overview of known	
solutions, with their advantages and disadvantages. Can present initial hypotheses, list basic research methods and describe the form of expected scientific contribution and expected scientific results. Preliminary analysis should imply the student's ability to make significant scientific contributions in the field of study in the course of independent research.	
Course content/structure With the support of the mentor, the student uses the acquired knowledge, but still studies and researches the selected scientific field, the content of which depends on the specifically considered problem. The paper should show that the student has extensive knowledge and understanding of the problems in the study area that he studied in doctoral studies, so that based on a broader overview of references will provide a comprehensive analysis of observed research tasks in a given scientific field, as well as known ways to solve these problems. Based on a critical review of known solutions, the student should identify the task of independent research, set goals, initial hypotheses and scientific methods used, explain their choice and present the results of their research, for example, modification of known algorithm, approach, model and / or method. , a new algorithm, approach, comparative analysis of the used algorithms and clear conclusions about the advantages and disadvantages of each of them in solving the set scientific-research task.	
Literature The general characteristic of literature analysis should be reflected in the systematic chronological approach of presenting relevant references in the field of research, starting from fundamental works in the formation of the field, to contemporary results published in leading international scientific journals, other scientific journals, conference proceedings, published doctoral dissertations. and books of textbook and / or monograph character. Relevant reference literature should set the framework for the development of the considered scientific field, ie the framework for the current and future development of the research field.	
Number of active teaching classes	Study research work: 10
Teaching methods Consultations with the mentor in all phases of work, with active monitoring and study of new results of relevant scientific journals, conference proceedings, technical reports of faculties and institutes and doctoral dissertations of other authors in the considered field of research.	
Knowledge evaluation (maximum 100 points)	
Written and positively graded Accession p	aper 50 points and its oral defence 50 points.

Course: Course id: Number of ECTS: 30	Doctoral dissertation (study research work)
Teacher:	Mentor
Course status:	Mandatory, third year, fifth semester
Precondition courses: 120 ECTS	

Educational goal

Preparing students for independent scientific research work on the preparation of the approach paper, as well as on the future preparation of the doctoral dissertation. With the help of a mentor, the student observes, presents the methodology and solves a specific current problem with scientific research methods, with the application of theoretical and applied knowledge acquired during the study.

Educational outcomes (acquired knowledge):

Successful first steps have been taken in training students for independent scientific research work in the elective field: they can analyse the available and available scientific literature and can give a comparative overview of known solutions, with their advantages and disadvantages. Can present initial hypotheses, list basic research methods and describe the form of expected scientific contribution and expected scientific results. Preliminary analysis should imply the student's ability to make significant scientific contributions in the field of study in the course of independent research.

Course content/structure

With the support of the mentor, the student uses the acquired knowledge, but still studies and researches the selected scientific field, the content of which depends on the specifically considered problem. The paper should show that the student has extensive knowledge and understanding of the problems in the part of the study area that he studied in doctoral studies, so that based on a broader overview of references will give a comprehensive analysis of observed research tasks in a given field, as well as known ways to solve these problems. Based on a critical review of known solutions, the student should identify the task of independent research, set goals, initial hypotheses and scientific methods used, explain their choice and present the results of their research, for example, modification of known algorithm, approach, model and / or method, a new algorithm, approach, comparative analysis of the used algorithms and clear conclusions about the advantages and disadvantages of each of them in solving the set scientific-research task.

Literature

The general characteristic of literature analysis should be reflected in the systematic chronological approach of presenting relevant references in the field of research, starting from fundamental works in the formation of the field, to contemporary results published in leading international scientific journals, other scientific journals, conference proceedings, published doctoral dissertations. and books of textbook and / or monograph character. Relevant reference literature should set the framework for the development of the considered scientific field, i.e.

the framework for the current and future development of the research field.

Number of active teaching classes (weekly)	Lectures:	Study research work: 20

Teaching methods

Consultations with the mentor in all phases of work, with active monitoring and study of new results of relevant scientific journals, conference proceedings, technical reports of faculties and institutes and doctoral dissertations of other authors in the considered field of research.

Knowledge evaluation (maximum 100 points)

Study research work on the doctoral dissertation 50 points and a paper published in a scientific journal from the SCI list on which the doctoral student is the first author of 50 points.

Course:		
Course id:	Doctoral dissertation (drafting and defence)	
Number of ECTS: 30		
Teacher:	Mentor and Commission for Review and Evaluation and Oral Defence	
Course status:	Mandatory, third year, sixth semester	
Precondition courses: 150 ECTS and p	ublished work in a scientific journal from the SCI list in which the	
doctoral student is the first author	v	
Educational goal		
The introductory work, especially the D	octoral dissertation, represents the independent scientific works of the	
candidate, with a scientific contribution t	that qualifies him as an independent scientific researcher in his further	
work.		
Educational outcomes (acquired knowle	edge):	
The student is qualified for independent s	cientific research work in the elective field: He can perform an analysis	
of available and available scientific literat	ure and can give a comparative overview of known solutions, with their	
advantages and disadvantages. Can preser	at initial hypotheses, list basic research methods and describe the form of	
expected scientific contribution and expe	ected scientific results. Preliminary analysis should imply the student's	
ability to make significant scientific contributions in the field of study in the course of independent research.		
Course content/structure		
The introductory paper, especially the Doctoral Dissertation, should show that the student has extensive knowledge		
and understanding of the problems in the study area studied in doctoral studies, by providing a comprehensive		
analysis of the observed research tasks in a given field, based on a broader overview of references. and known		
ways to solve these problems. Based on a critical review of known solutions, the student should identify the task of		
independent research, set goals, initial hyp	ootheses and scientific methods used, explain their choice and present the	
results of their research, for example, mod	dification of known algorithm, approach, model and / or method., a new	
algorithm, approach, comparative analysis	s of the used algorithms and clear conclusions about the advantages and	
disadvantages of each of them in solving the set scientific-research task.		
Literature		
The general characteristic of literature analysis should be reflected in the systematic chronological approach of		
presenting relevant references in the field of research, starting from fundamental works in the formation of the		
field, to contemporary results published in leading international scientific journals, other scientific journals,		
conference proceedings, published doctoral dissertations. and books of textbook and / or monograph character.		
Relevant reference literature should set the	e framework for the development of the considered scientific field, ie the	
framework for the current and future devel	lopment of the research field.	
Number of active teaching classes (week	dy) Other: 10 Study research work: 20	
Teaching methods		
Consultations with the mentor in all phases of work, with active monitoring and study of new results of relevant		
scientific journals, conference proceedings, technical reports of faculties and institutes and doctoral dissertations of		
other authors in the considered field of research.		
Knowledge evaluation (maximum 100 points)		
Written and positively evaluated Doctoral dissertation 50 points and its oral defence 50 points.		