$a^{\text {5К }}$

ALFA BK UNIVERSITY

Faculty of Mathematics and Computer Sciences (ALFABK-FMCS)

STUDY PROGRAMME

Computer Science

UNDERGRADUATE ACADEMIC STUDIES

Course:	Mathematical analysis 1	
Course id: 19.0R001		
Number of ECTS: 6		
Teacher:	Danijela Karaklić; Zorica Savanović	
Course status:	Mandatory	
Precondition courses: None		
Educational goal Getting to know and mastering the basic concepts from the differential and integral calculus of functions of one real variable.		
Educational outcomes (acquired knowledge): Upon completion of the course, the student has a basic knowledge of the functions of one real variable and the differential and integral calculus. He is able to follow courses in professional fields in which the concepts and techniques he has mastered are applied and to identify problems to which he can apply the acquired knowledge.		
Course content/structure Theoretical classes: Arrays. Convergence criteria. The notion of a real function of one variable. Limit value of the function. Continuity of function. Properties of functions continuous on a segment. The first derivative of the function. Differential function and application. Higher order differentials. Basic theorems of differential calculus. Taylor's formula. The notion of extremum. Necessary and sufficient conditions for the extreme. Convexity of curve and bend point. Curve asymptotes. A definite integral. Indefinite integral. Relationship of definite and indefinite integral. Shift and partial integration methods. Integration of rational and some classes of irrational functions. Integral calculus applications. Uncharacteristic integrals. Numeric rows. Degree rows. Practical teaching: Tasks from the stated theoretical areas.		
1. D. Adnađević, Z. Kadelburg: Mathematical Analysis 1, Faculty of Mathematics, Belgrade 2008. 2. S. Dajović: Mathematics 1 and 2, FON, Belgrade 2007. 3. Đ. Jovanov, R. Lazović, D. Đorić: Mathematics 1, Collection of tasks, FON, Belgrade 2007. 4. R. Stankovic, N. Deretic, M. Nikolcevic: Mathematics - basics of theory with examples. Blace: Business School of Vocational Studies, 2013. 5. R. Stanković, N. Deretić: Practicum in mathematics, Belgrade Business School, Belgrade 2008.		
Number of active teaching classes	Lectures: 2	Practical classes: 2
Teaching methods.Frontal, group		
Knowledge evaluation (maximum 100 points)		
Pre-examination obligations: Colloquium exam: 50 Lecture attendance: 5 Exercise attendance: 5		Final exam:40

Course:	Mathematical logic and algebra
Course id. 19.0C0001	
Number of ECTS: 6	
Teacher:	Ivan Pavkov
Course status:	Mandatory
Precondition courses:	
Educational goal Acquisition of general a	ledge in mathematical logic and algebra.

Educational outcomes (acquired knowledge):

Upon completion of the course, the student has basic knowledge of mathematical logic and algebra and is able to attend courses in professional fields in which those concepts and techniques are applied and to identify problems to acquired knowledge can be applied.

Course content/structure

The notion of a set and basic operations with sets. Powerset. Cartesian product. The notion of relation. Equivalence relations. Order relations. A set of natural numbers. Mathematical induction. The concept of function. Injection, sirjection and bijection. Basic set identities. Countability (countability of a set of integers, set of rational numbers) and uncountableness (uncountableness of a set of real numbers). Cantor-Bernstein theorem. The axiom of choice and its equivalents.

Proposition calculus. The notion of sentence. Basic operations of propositional logic. Propositional formulas. Propositional algebra. Normal forms - CNF, DNF. Valuation of propositional logic. Tautology. Proving set identities using tautologies.

First-order predicate calculus. First order language. Terms and formulas. Free and bounded variables. Value of terms and formulas. Valid formulas, examples and methods of prooving (board method, scolemization, resolution method etc.).
The concept of algebraic structure. Basic algebraic structures. Homomorphisms; subalgebras and generating sets; direct products. Congruences. Semigroup, group, ring, field. Degree of an element in a group, Lagrangian theorem, order of an element. Cyclic groups. Euler group and Euler theorem. Isomorphism theorem for groups and applications.
Polynomials over finite and infinite fields.

Literature

1. Vojvodić, G. (1992). Algebra, Novi sad: Institute of Mathematics, Faculty of Science
2. Vojvodić, G. (1998). Lectures in mathematical logic and algebra: University in Novi Sad
3. Prešić S. (1983), Elements of Mathematical Logic, Institute for Textbooks and Teaching Aids, Belgrade
4. Mijailović Ž., Petrović Ž. (2007), Mathematical Logic, Faculty of Mathematics, Belgrade.
5. Kalajdžić G. (1998), Algebra, Faculty of Mathematics, Belgrade
6. Mijailović Ž. (1998), Algebra, Milgor, Belgrade
7. Božović N., Mijailović Ž. (1990), Introduction to group theory, Scientific book, Belgrade
8. Perić V. (1980), Algebra, Svjetlost, Sarajevo

Number of active teaching classes (weekly)	Lectures: 2	Practical classes: 2
Teaching methods		

Teaching methods

Classes are conducted frontally in a group

Knowledge evaluation (maximum 100 points)

Pre-examination obligations:
Colloquium exam: 50
Activity: 10
Lecture attendance:
Exercise attendance:

Final exam:
Written exam: 20
Oral exam: 20

Educational outcomes (acquired knowledge):

Students are able to use spoken and written English in simpler, everyday situations.

Course content/structure

Theoretical classes
Course content English 1 is English for academic and professional purposes in the field of informatics. Knowledge of general English at the intermediate level is assumed and professional English is processed. The main goals of teaching are methodical processing of modern professional texts and the adoption and expansion of knowledge about IT terminology, introducing students to the specific structures of the language of science and technology, as well as the systematization of relevant grammar. The most common skills are reading, understanding original English, speaking, and translating. At the end of the course, students should be able to present / understand basic topics related to their profession.

Practical classes: Exercises, Other forms of teaching, Study research work
Use of article, noun, adjectives, pronouns, auxiliary verbs (be, do, have), modal verbs. Use and construction of verb tenses (Present Simple, Present Continuous, Present Perfect, Past Simple, Future forms). Questionable and negative sentence form. Vocabulary related to everyday topics: dating, family, free time, work, food and drink, naming and description of everyday objects, description of people and places and the like.

Literature

- (2004): Oxford Oxford Dictionary of Business Oxford, University Press
- Mitic, G. (2005): "Reading Texts, Short English Grammar Book," FON, Belgrade
- Prnjat, Z. \& Petkovic, V .. (2006): "English Language 1", FTB University "BK", Belgrade
- Murphy, R. (2007): "English Grammar in Use". Third Edition. CUP
- "Business English Reader 1" (collection of professional texts adapted to the curriculum in electronic edition)
- monolingual and bilingual dictionaries

Number of active teaching classes	Lectures: 2	Practical classes: 2

Teaching methods

Classes are realized with the help of modern technology and are supported by a series of practical examples with the aim that students master the subject as well as possible. Workshops for the exchange of ideas and knowledge through group discussion are also applied. Mentoring and team work are used in the preparation of seminar papers on the agreed topic.

Knowledge evaluation (maximum 100 points)			
Pre-exam obligations	Points	final exam	Points
activity during the lecture	10	written exam	20
practical teaching	10	oral exam	20
colloquia	30		
seminars	10		

Practical classes:

Computational exercises. Laboratory exercises. Demonstration exercises. Electronics, switches, simple processor model, practical experiments with standard logic circuits, simulation software. Design of individual components, work in machine language, work on assembler.

Literature

- Arhitektura i organizacija računarskih sistema, Negovan Stamenković, Besjeda 2019. ISBN 978-

```
99938-1-380-4
```

- Arhitektura računara-ekukacioni računarski sismeti, priručnik za simulaciju sa zadacima, Đorđević J, Nikolić V, Radivojević Z, akademske misli, Beograd 2004. godine.
- Tomašević V., Osnovi arhitekture i organizacije računara, Univerzitet Singidunum, 2019, p. 243.
- Hennessy J., Patterson D., Computer Architecture: A Quantitative Approach 6th Edition, Elsevier, 2019, p. 857.
- Đorđević J., Arhitektura računara: edukacioni računarski sistem, Akademska misao, 2018, p. 330.

Number of active teaching classes	Lectures: 2	Practical classes: 2
Teaching methods Lectures and exercises use frontal, group and laboratory-experimental teaching methods with the use of modern technology. Knowledge evaluation (maximum 100 points)		
Pre-examination obligations: Colloquium exam (2): $60(30+30)$ Activity: 10 Lecture attendance: Exercise attendance:		Final exam: 30

Course:	
Course id. 19.0C0004	
$y n$	
$y y y$	

Teacher:	Ivan Pavkov
Course status:	Mandatory
Precondition courses: Mathematical logic and algebra	
Educational goal Acquisition of general and professional knowledge of linear algebra.	

Educational outcomes (acquired knowledge):

Upon completion of the course, the student has basic knowledge of linear algebra and is able to attend courses in professional fields in which those concepts and techniques are applied. Moreover, students are capable to identify problems that can be solved using the acquired knowledge.

Course content/structure

Vectors of ordered n-tuples in real and complex space. Norm, distance and angle. Vector space. Vector subspace, intersection and sum of vector spaces. Linear independence of vectors. Linear envelope. Direct product of vector spaces. Linear mappings. Base and dimension of vector space. Coordinates.

Matrices. Matrix operations. Types of matrices. Matrices of linear mapping. Equivalent and similar matrices. Rank of a matrix. Determinant, definition and properties. Bine-Cauchy's theorem. Calculation of the determinant. Inverse matrix.

Systems of linear equations. A set of solutions and its structure. Gaussian procedure. Kronecker-Capelli theorem. Kramer's theorem.

Eigenvalues and eigenvectors. Polynomials of matrices and linear operators, minimal and characteristic polynomials. Cayley-Hamilton theorem. Bilinear and square forms. Matrices of triangular and diagonal type. Diagonalization. Classification of real symmetric forms. Jordan matrix.

Euclidean vector spaces. Scalar product, norm, distance, angle. Cauchy-Schwartz inequality. Orthogonality, orthonormal base. Gram-Schmidt procedure of orthogonalization, orthogonal projection, distance between vector subspaces. Orthogonal matrices. Mixed and vector product in Euclidean vector space. Orthogonal operators, canonical bases and matrices.

Literature

1. Kalajdžić G. (2007), Linear algebra, 5th edition, Faculty of Mathematics, Belgrade
2. Stojaković Z., Herceg D. (1992), Linear algebra and analytical geometry, Novi Sad: University of Novi Sad, Institute of Mathematics
3. Lipkovski A. (2007), Linear algebra and analytical geometry, 2nd edition, Institute for Textbooks and Teaching Aids, Belgrade.
4. Herceg D., Stojaković Z. (1989), Numerical methods of linear algebra-book of exercises, Belgrade: Construction book

Number of active teaching classes (weekly)	Lectures: 2	Practical classes: 2
Teaching methods Classes are conducted frontally in a group		
Knowledge evaluation (maximum 100 points)		
Pre-examination obligations:	Final exam:	
Colloquium exam: 50	Written exam: 20	
Activity: 10	Oral exam: 20	
Lecture attendance:		
Exercise attendance:		

Course:	Fundamentals of programming	
Course id: 19.0I0002		
Number of ECTS: 6		
Teacher:	Goran Keković, assistant Vladimir Mikić	
Course Status:	Mandatory, the first year, the first semester	

Precondition courses: None

Educational goal

The course aims are to give a broad insight into the field of programming languages and learning about the process of software development with special emphasis on procedural programming languages, with the use of basic data structures and algorithms, basic search and sorting.

Educational outcomes (acquired knowledge)

The student is trained to apply top-down methods for designing algorithms. Also, the student is trained to create algorithmic solutions in the form of computer programs as well as to design, encode and test software solutions, including knowledge of techniques and methods for finding and correcting errors.

Course content/structure

Lectures

Introduction to the field of programming languages. Brief overview and comparison of basic program paradigms. Activities in the process of software development and maintenance. The concept of algorithm and its role in the problem-solving process. Basic concepts from low-level programming, machine-oriented languages. High-level procedural programming languages. Fundamentals of syntax and semantics of high-level programming languages. The concept of variable, data type, operator and expression. Basic primitive and structured types. Commands. Basic control structures. Pointing mechanism and dynamic memory allocation. Structural decomposition and modularization. Subroutines. Recursion. File concept. Input / output operations. Illustration of procedural programming concepts in a specific procedural language with parallel and comparative elaboration of alternative implementation of basic concepts in other procedural languages Exercises
Students independently solve tasks on the computer, going step by step through all phases of program development, from the phase of analysis of the obtained task, selection of the appropriate algorithm, implementation of the selected algorithm, to program entry in the selected environment and appropriate program testing. The topics of the tasks are harmonized with the lectures and exercises from the subject.

Literature

1. L. Kraus, Programming language C with solved tasks, Akademska misao, Belgrade, 2008.
2. B. Keringhan, D. Ritche, Programming Language C, Contemporary Administration, Belgrade, 1989,
3. D. Urošević, Algorithms in the programming language C, Mikroknjiga, Belgrade, 2006.

| Number of active teaching classes (weekly) | Other classes | | |
| :--- | :--- | :--- | :--- | :--- |
| Lectures: 2 Exercises: 3 | Other forms of teaching | Study research | |
| Teaching methods
 Classical teaching methods with the use of modern technology in lectures and exercises. | | | |
| Knowledge evaluation (maximum 100 points) | | | |
| Pre obligations | points | Final exam | points |
| Lecture attendance | 10 | Oral part of the exam | 30 |
| Laboratory exercise attendance | 20 | | |
| Colloquia | 30 | | |
| Seminars | 10 | | |

Course:	Introduction to Numerical Mathematics	
Course id: 19.010004		
Number of ECTS: 6		
Teacher:	Miroslava Mihajlov Carević	
Course status:	Mandatory	
Precondition courses: None		
Educational goal Acquisition of general and professional knowledge from numerical algorithms.		
Educational outcomes (acquired knowledge): Upon completion of the course, the student has basic knowledge of numerical algorithms. He is able to follow courses in professional fields in which the concepts and techniques he has mastered are applied and to identify problems to which he can apply the acquired knowledge. He is able to solve practical tasks from the exposed area using the Matlab software package. Can evaluate the reliability of the obtained results.		
Course content/structure Theoretical classes: Numerical Direct and iterative methods Interpolation error. Numerical d linear equations, finding the inve eigenvectors of quadratic regula nonlinear equations. Methods for solving differential e Application of the mentioned met Practical classes: Tasks from the	thematics, role in solving systems rentiation and int matrix and deter matrices. Method ations. ds using the Matla ated theoretical ar	mathematical modelling. Sources and types of errors. of linear equations. Interpolation polynomials. egration. Numerical methods for solving systems of minant values. Methods for finding eigenvalues and s for solving nonlinear equations and systems of b software package. reas.
Literature		
1) B. Jovanović, D. Radunovici 2) D. Radunović: Numerical 3) D. Radunović, A. Samard Matlab and Fortran, Acad 4) D. Herceg, N. Krejic: Num 1998.	Numerical Analysi ethods, Academic ć, F. Marić: Nume ic Thought, 2005 rical analysis - a	s, Faculty of Mathematics, Belgrade 2003. Thought, 2004. rical methods - a collection of problems through C, collection of tasks, University of Novi Sad, Novi Sad,
Number of active teaching classes	Lectures: 2	Practical classes: 2
Teaching methods. Frontal, grou		
Kno	ge evaluation	aximum 100 points)
Pre-examination obligations: Colloquium exam: 50 Lecture attendance: 5 Exercise attendance: 5		Final exam:40

Course:		English language 2		
Course id.				
Number of ECTS: 5				
Teacher:		Aferdita Crnisanin		
Course status:		Compulsory, second year, third semester		
Precondition courses: English language 1				
The aim of the course is to provide students with sufficient prior knowledge for independent work in the profession and for further training in a global context.				
Educational outcomes (acquired knowledge): Students are able to use spoken and written English in simpler, everyday situations.				
Course content/structure Theoretical classes Course content English 2 is English for academic and professional purposes in the field of informatics. Knowledge of general English at the intermediate level is assumed and professional English is processed. The main goals of teaching are methodical processing of modern professional texts and the adoption and expansion of knowledge about IT terminology, introducing students to the specific structures of the language of science and technology, as well as the systematization of relevant grammar. The most common skills are reading, understanding original English, speaking, and translating. At the end of the course, students should be able to present / understand basic topics related to their profession. Practical classes: Exercises, Other forms of teaching, Study research work Analysis of texts from the processed areas.				
Literature - (2004): Oxford Oxford Dictionary of Business Oxford, University Press - Mitic, G. (2005): "Reading Texts, Short English Grammar Book," FON, Belgrade - Prnjat, Z. \& Petkovic, V .. (2006): "English Language 1", FTB University "BK", Belgrade - Murphy, R. (2007): "English Grammar in Use". Third Edition. CUP - "Business English Reader 1" (collection of professional texts adapted to the curriculum in electronic edition) monolingual and bilingual dictionaries				
Number of active teaching classes		Lectures: 2	Practi	asses: 2
Teaching methods Classes are realized with the help of modern technology and are supported by a series of practical examples with the aim that students master the subject as well as possible. Workshops for the exchange of ideas and knowledge through group discussion are also applied. Mentoring and team work are used in the preparation of seminar papers on the agreed topic.				
Knowledge evaluation (maximum 100 points)				
Pre-exam obligations	Points	final exam		Points
activity during the lecture	10	written exam		20
practical teaching	10	oral exam		20
colloquia	30			
seminars	10			

Literature

Primary:

1. Rot, Nikola. Opšta psihologija, (11-26, 26-45, 55-62). Beograd: Zavod za udžbenike i nastavna sredstva, 2004.
2. Hrnjica, S. Opšta psihologija sa psihologijom ličnosti, (11-65, 130-150, 221-274, 277-323). Beograd: Naučna knjiga Nova, 2005.
Additional:
3. Hok, R. R. Četrdeset znanstvenih studija koje su promijenile psihologiju, (odabrana poglavlja). Naklada Slap, Jastrebarsko. 2004.

\section*{| Number of active teaching classes | Lectures 2 | Practical classes 3 |
| :--- | :--- | :--- |}

Teaching methods: Academic speaking, problem solving presentation, research methods, workshop work in small groups, discussion on a previously given topic, asking questions after lectures or assigned reading. Consultations are performed individually.

Knowledge evaluation (maximum 100 points)			
Pre-examination obligations	Points	Final exam	Points
Lecture attendance	10	Written part of the exam	-
Practical classes	20	Oral part of the exam	30
Colloquium exam	40		
Seminar paper	-		

Course:		Algorithms and data structures 2		
Course id.:				
Number of	S: 7			
Teacher:		Kopanja S. Lazar		
Course Sta		mandatory, second year, forth semester		
Precondition courses: Algorithms and data structures 1				
Educational goal Acquiring advanced knowledge of sophisticated concepts of data structures and algorithms used in applications and programming.				
Educational outcome (acquired knowledge) Ability to apply the acquired knowledge in solving complex problems, as well as application of algorithms in solving problems of practical importance.				
Course content/structure Theory classes 1. The basics of data structure, arrays, and rows, summary 2. Methods of solving complex algorithms 3. Algorithm complexity analysis 4. Backtracking, greedy algorithms, dynamic programming, geometric algorithms 5. Lists 6. Stacks and Queues with complex operations 7. Trees, specific examples and balanced trees 8. Graphs - definition, representation. 9. Graph search algorithms. Search of a directed graph. 10. Algorithms for determining reachability of a vertex within a graph. 11. Weighted graphs. Dijkstra, Floyd, Kruskal's and Prim's algorithm. Practical classes follow the content of the lecture				
Literature 1. Tomašević Milo, Strukture podataka, Akademska misao, 2011. 2. Živković Miodrag, Algoritmi, Matematički fakulte Beograd, 2000. 3. Dejan Živković, Uvod u algoritme i strukture podataka, Univerzitet Singidunum, Beograd, 2010. 4. Drozdek A., Data Structures and Algorithms in C++, 4th edition. Cengage Learning,Boston MA, $2012 .$,				
Number of active teaching classes:				Other classes
Lectures: 3	Exercises: 2	Other forms of teaching	g Study research	
Teaching methods Lectures, auditory exercises and laboratory exercises.				
Knowledge evaluation (maximum 100 points)				
Pre obligat		points	Final exam	points
Lecture atte		10 O	Oral part of the exam	20
Laboratory	cise attendance		Written exam	20
Colloquia		50		
Seminars				

Cour		Object-Oriented Programming		
Course id	10013			
Number of				
Teacher:		Goran Keković, assistant Miloš Ilić		
Course Stat		Mandatory, the second year, the fourth semester		
Precondition courses: no				
Educational goal Understanding and mastering the principles of object-oriented programming, such as abstraction, encapsulation, inheritance and polymorphism. Understanding the concepts of exceptions and templates, as well as the basic concepts of competitive and event-driven programming. Acquiring the skill of object-oriented programming in C ++. Using the standard template library (STL). Getting to know the Java language. Educational outcomes (acquired knowledge) Upon successful completion of the course, students will be able to: - interpret and apply the paradigm of object-oriented programming; - demonstrate the principles of object-oriented programming in C ++; - solve practical problems in C ++; - use the standard template library (STL). - develops object-oriented multithreaded applications with a graphical user interface in Java.				
Course content/structure Lectures An overview of 00 programming concepts in $\mathrm{C}++$. Classes and objects. Constructors and destructors. Static members. Friends. Nested and local classes. Operator overlap. Derivation and inheritance. Polymorphism and dynamic binding. Abstract classes. Multiple inheritance. Exceptions. Template functions and classes. Standard Template Library (STL). Input and output flows. An overview of Java programming concepts. Exercises Auditory practises, laboratory demonstration and laboratory control exercises. Home works.				
Literature 1. L. Kraus, Programming language $C++$ with solved tasks, Akademska misao, Belgrade, 2011. 2. D. Milicev, Lj. Laзаревић,.. Marušić, Object Oriented Programming in C ++, Script with Practicum, Mikro knjiga, Belgrade, 2001. 3. M. Stanković, Programming Languages, Faculty of Electronics in Niš, Edition: basic textbooks, 2000. 4. Martin Fowler, Kendall Scott: UML Distilled: A Brief Guide to the Standard Object Modeling Language, Second Edition. August 1999. Addison-Wesley Professional, ISBN: 020165783X 5. Kraus, L., Solved problems in the Java programming language, 3rd edition, Academic Thought, Belgrade, 2012,				
Number of active teaching classes (weekly): 4 年 ${ }^{\text {a }}$				Other classes
Lectures: 2	Exercises: 2	Other forms of teaching	Study research	
Teaching methods Classical teaching methods with the use of modern technology in lectures and exercises.				
Knowledge evaluation (maximum 100 points)				
Pre obligat		points	Final exam	points
Exercise att		20	Oral part of the exam	30
Lecture atte		10		
Colloquia		30		
Seminars		10		

Course:	Signals and systems	
Course id.		
Number of ECTS: 8		
Teacher:	Dejan V. Đukić	
Course status:	Elective, second year, fourth semester	
Precondition courses: None		
Educational goal Introduction to the basics of systems theory, using a general systems approach, including modeling methods and computer simulation algorithms in the state space of (non) linear discrete and continuous dynamical systems with distributed and concentrated parameters.		
Educational outcomes (acquired knowledge): Ability to apply methodology and system analysis of business processes.		
Course content/structure:		
Classification and basic properties of signals and systems. Concept of general system theory, system state vector, input and output vectors. Discretization of analog signals and models of the selection process. Fourier, Laplace and z-transform. Connection of transformation relations of analog and discrete signals. Methods and algorithms of mathematical modeling. Time and frequency analysis of the system. System management and estimation conditions. System stability, polynomial and frequency criteria. Computer simulation, system responses to typical input signals, multivariable analysis in state space. Analog-todigital and digital-to-analog signal conversion. Software solutions. Practical classes:		
Literature - Petrović T., Rakić A., (2006): Signali i sistemi, Deksin, Beograd - Padulo L., Arbib M.A., (1974): System Theory, A Unified State-Space Approach to Discrete and Continuous Systems, Philadelphia, Saunders.		
Number of active teaching classes	Lectures: 3	Practical classes: 3
Teaching methods In addition to lectures and computational exercises, in the classroom, using the formed simulation models of various physical processes, the time and frequency characteristics of the analysed system and signal are considered.		
Knowledge evaluation (maximum 100 points)		
Pre-examination obligations: Colloquium exam: 30 Activity: 10 Lecture attendance: Practical work: 20:	Final exam Written ex Oral exam	

| Course: | |
| :--- | :--- | :--- |
| Course id: 19.OI0021 | |
| Number of ECTS: 8 | Multimedia systems |
| Teacher: | Nenad Gligorić |
| Course status: | |
| Precondition courses: None | |
| Educational goal is to provide knowledge about principles, technology, devices, that are being used in
 development of multimedia projects. The goal is to familiarize with processes and software for processing
 and compression of multimedia signal. Implementation of standards for data transmission and multimedia
 signal. | |
| Educational outcomes (acquired knowledge):
 The students completing the Multimedia system design course will be capable to use software for signal
 processing, development of multimedia content in form of web pages, DVD, video tutorials and
 understanding communication techniques that are being used for transmission and distribution of the
 multimedia signal.
 Course content/structure
 Theoretical lectures
 Introduction to multimedia. Multimedia hardware technologies. Platforms. Interfaces. Devices for memory
 and storage. Input devices. Output devices. Architecture of multimedia systems. Multimedia devices for
 processing of video and audio signals. Format of text, graphic, sound, and motion picture.
 Communication in multimedia technology. Multimedia software and tools. Use of tools: Adobe Photoshop,
 Adobe Premier, Adobe After Effects. Synchronization of image and sound. Methods for processing and
 compression of multimedia signals. JPEG compression. H261, H263, H264, MPEG1, MPEG2 and MPEG4
 standards. Distribution of multimedia signal. Transmission of multimedia signal over the Internet.
 Projection of multimedia systems.
 Laboratory exercises | |

Course:	Pedagogy		
Course id.			
Number of ECTS: 8			
Teacher:	Gordana P. Budimir-Ninković		
Course status:	Mandatory		
Precondition courses: None			
Educational goal: The aim of the course is that students master the basics of pedagogical science pedagogical concepts and laws and to enable them to use pedagogical sources independently an critically and understand the phenomenon of upbringing and education. Enabling students to lear independently, infer and think critically, as well as to correctly observe and explain the pedagogica phenomena. Developing interest in the study of pedagogical content and research on pedagogical phenomena. Developing love for the vocation of the educator. Gaining a positive professional attitud towards pupils in the process of educational work in primary and secondary schools.			
Educational outcomes (acquired knowledge): General pedagogical culture of a teacher; the ability to achieve the best and the most successful educational work with primary and secondary school pupils by applying the acquired practical knowledge, skills and abilities. Students are able to analyse and improve their own pedagogical competence in working with students and parents. They are able to design, implement and evaluate the cooperation of the school with the environment and the cooperation of teachers with parents.			
The concept and subject of pedagogy. Education as the broadest pedagogical concept and process. The importance of education and upbringing. Education and society: moral crisis, education and culture, education for tolerance and multiculturalism, education and work, education and socio-emotional development, educational and individual development, education and children's rights, education and maturity, education and civilisational heritage, education and ecology. The relation between upbringing and education. Personality development factors. Historical overview of the development of education and pedagogy. The most famous pedagogues and their works. System of pedagogical disciplines. The relation between pedagogy and other sciences. The aim and tasks of education. Versatile personality development. Intellectual education. Aesthetic education. Psychical education. Work education. Moral education. Principles of education and upbringing. General methods and means of upbringing and education. Upbringing system. Basic factors of the education and upbringing system. Education system. Personality and profession of the educator. Education in free time. Lifelong learning.			
3. Budimir-Ninković, Gordana. Pedagoški Praktikum. Kragujevac: Pedagoški fakultet, 2009. 4. Komenski, Jan Amos.Materinska škola, Beograd: Prosveta, 1946. 5. Lok, Džon. Misli o vaspitanju. Beograd: Kultura, 1950. 6. Grej, Džon.Deca su iz raja. Beograd: Esotherija, Moć knjige, 2001. 7. Vaspitanje za demokratiju. Zbornik radova. Urednik S. Joksimović. Beograd: Institut za pedagoška istraživanja, 2005.			
Number of active teaching classes	Lectures 3	Practical classes	
Teaching methods: Lectures, practical classes, discussion with students, the analysis of seminar papers and testing the knowledge acquired during classes. Consultations.			
Knowledge evaluation (maximum 100 points)			
Pre-examination obligations	Points	Final exam	Points
Lecture attendance	10	Written part of the exam	
Practical classes		Oral part of the exam	30
Colloquium exam	50		
Seminar paper	10		

Course:	Combinatorics and graph theory		
Course id.			
Number of ECTS: 6			
Teacher:	Ivan D. Pavkov		
Course status:	Mandatory, third year, fifth semester		
Precondition courses: Mathematical logic and algebra			
Educational goal Acquiring basic knowledge of combinatorics and graph theory.			
Upon completion of the course, the student should have basic knowledge of graph theory and algorithms and be able to apply them in problems in practice. He is able to follow courses in professional fields in which the concepts and techniques he has mastered are applied and to identify problems to which he can apply the acquired knowledge.			
Course content/structure: Theoretical classes:			
Counting. Permutations of sets. Combinations of sets. Binomial formula. Permutations and combinations of multisets. Polynomial formula. On and off formula. Dirichlet principle. Breaking numbers into additions. Number of circulations. Stirling numbers of the second and first kind. White numbers. Generator functions. Differential equations. Fibonacci numbers. Concept, parts and types of graphs. Isomorphism of graphs. Walks, chains, roads, cycles. Connectivity. Planar graphs. Euler's and Hamilton's graphs. The commercial traveller problem. The shortest path problem. Dijkstra and the Floyd-Worschel algorithm. Trees. Kruskalov and Primov algorithm. Representation of graphs by matrices. Colouring graphs. Chromatic number. Applications of graph theory in computing. Practical classes: Tasks from the stated theoretical areas.			
Literature - Mladenović, P. (1992). Kombinatorika. Beograd: Društvo matematičara Srbije - D. Veljan, Kombinatorika s teorijom grafova, Školska knjiga, Zagreb 1989. - J. A. Anderson, Diskretna matematika sa kombinatorikom, Računarski fakultet, Beograd, 2005. - V. Petrović, Teorija grafova, Novi Sad, 1998.			
Number of active teaching classes		Lectures: 2	Practical classes: 2
Teaching methods frontal, group			
Knowledge evaluation (maximum 100 points)			
Pre-examination obligations: Colloquium exam: 50 Activity: 10 Lecture attendance: Exercise attendance:		Final exam Written ex Oral exam	

Course:		Operating Systems		
Course id:	0016			
Number of	S: 6			
Teacher:		Goran Keković		
Course Sta		Mandatory, the third year, the fifth semester		
Precondition courses: None				
Educational goal The course is an introductory course in system software. Introduction to operating systems. Principles of operating systems. Deepening theoretical knowledge of Linux and Windows, operating systems. Training to use the Linux + network operating system. Educational outcomes (acquired knowledge) At the end of the course, students are expected to successfully master the basic concepts of operating systems, and fully master data protection techniques.				
Course content/structure Lectures The role and tasks of operating systems. Development, structure and overview of operating systems. Hardware basics for performing operating system functions. Functioning of a typical operating system. Programs, program tasks, processes and threads within a computer system. Mutual exclusion of threads. Operating system kernel. Communication between threads, synchronization mechanisms. Ways to assign processors to threads. Communication between processes. Respect for time limits. Hierarchy of memory space. Memory management. File management. Input / output control. Operating system interfaces. Examples of operating systems: UNIX / Linux, Windows. Practical classes: Exercises, Other forms of teaching, Study research work Verification of concepts introduced in lectures on specific systems in use today, primarily Windows and Linux. Installation, administration and maintenance.				
Literature 1. Đorđević B. (2005), Operating Systems, Mikro knjiga, Belgrade, 2. Archer Harris J. (2001), Operating Systems, McGraw-Hill, USA,				
Number of active teaching classes (weekly): 4				Other classes
Lectures: 2	Exercises: 2	Other forms of teaching	Study research	
Teaching methods The lectures use classical teaching methods with the use of modern information technology. The principles of operating systems are explained. Illustrative examples are analysed in the exercises using classical teaching methods. Computers solve problems by creating tasks in an appropriate environment.				
Knowledge evaluation (maximum 100 points)				
Pre obligat		points	Final exam	points
Lecture atte		10	Oral part of the exam	40
Laboratory	cise attendance	15		
Colloquia		20		
Seminars		15		

Course:	English language 3
Course id.	
Number of ECTS: 5	
Teacher:	Aferdita Crnisanin
Course status:	Compulsory, fourth year, fifth semester
Precondition courses: English language 2	
Students are introduced to the basic concepts from the narrower field of profession in English, where the main goal is to provide students with knowledge of the professional language for quality monitoring of information literature in English. Since, in order to achieve that goal, it is equally necessary to know the vocabulary, i.e. the contents of the English language itself, as well as the language structures, have a significant place in grammar.	
The student understands texts and has the ability to present professional content with special emphasis on communication skills. The student can use professional literature and express his ideas as well as new knowledge in English in written and oral communication	
Course content/structure	
English language lin globalization, mass application. Types of English-speaking cou the Internet, abbrevi mathematical concep	rmation age. Means of communication and communication mputer: historical development of computers and their of computers, computer management. Computer education in formation language development. Internet. Use of English on Rules of conduct on the Internet, computer crime. Expressing
Practical classes: Exe The exercises practic systems in English exercises, students p	aching, Study research work onunciation of internationalism in the field of information with verbs and verb tenses in active and passive. Also in the ls that are successively published on the course website.

Literature

(2004): Oxford Oxford Dictionary of Business Oxford, University Press

Mitic, G. (2005): "Reading Texts, Short English Grammar Book," FON, Belgrade
Prnjat, Z. \& Petkovic, V .. (2006): "English Language 1", FTB University "BK", Belgrade
Murphy, R. (2007): "English Grammar in Use". Third Edition. CUP
"Business English Reader 1" (collection of professional texts adapted to the curriculum in electronic edition)
Thomson, A.J., Martinet, A.V. (2003). A Practical English Grammar, Oxford University Press monolingual and bilingual dictionaries

Number of active teaching classes	Lectures: 2	Practical classes: 2	
Teaching methods Communicative and grammatical-translation method in combination.			
Knowledge evaluation (maximum 100 points)			
Pre-exam obligations	Points	final exam	Points
activity during the lecture	10	written exam	40
practical teaching	15	oral exam	
colloquia	20		
seminars	15		

Course:		Databases 2		
Course id:				
Number				
Teacher:		Vesin D. Boban		
Course Sta		mandatory, third year, sixth semester		
Precondition courses: Databases				
Educational goal The aim of the course is understanding and adopting advanced database concepts and techniques, as well as to master application query languages and transaction programming. Realizing the importance of physical organization of data in the database is also the goal of the course.				
Educational outcome (acquired knowledge) Upon completion of the course, students has mastered database modelling and programming techniques. Students are trained for: - actively using the SQL query language - programming simpler databases - understanding the database management system - following modern trends in the field of databases				
Course content/structure Therory classes Combining database language and procedural programming language SQL/C; SQL/PHP. Fourth generation environment. Transaction management: transactions, failure and recovery, concurrency control. Client-server database systems. Physical database design: file structure; indexed files, hash files, variable-length record files. Database efficiency and settings. Practical classes: Mastering advanced SQL techniques by querying. Insert query languages into procedural languages (SQL/C). Practicing the principles of transaction management. Students are given a practical task consisting of independently designing an ER data model and translating it into a relational model.				
Literature Pavlović Lažetić, G.(1999), „Osnove relacionih baza podataka", Matematički fakultet u Beogradu Lazarević, B., Marjanović, Z., Aničić N., Babarogić, S. (2006): „Baze podataka", Fakultet organizacionih Beogradu Ulman, J \& Widom,J. (2008), "A First Course in Database Systems", Prentice Hall (3rd edition) Silberschatz, A., Korth, H.F. \& Sudarshan, S.(2002), "Database system concepts", McGraw-Hill (4th ed.) Date, C.J. (2004). "An introduction to database systems", Addison-Wesley (8th edition)				
Number of active teaching classes (weekly): 4				Other classes
Teaching methods Classical teaching methods with the use of a projector are used in the lectures. The presented principles and analyzing typical problems are practiced in the exercises. During the practical classes, students apply the learned techniques.				
Knowledge evaluation (maximum 100 points)				
Pre obligat		points	Final exam	points
Lecture atte	nce and activity	10	Written exam	20
Exercise att	ance and project		Oral exam	20
Colloquium		50		
Seminary				

Course:	Programming languages and paradigms
Course id: 19.0C0013	
Number of ECTS: 5	
Teacher:	Nenad Gligorić
Course status:	Mandatory
Precondition courses: Programming 2, Introduction to object-oriented programming	
Educational goal is to introduce basic characteristics of different programming styles, with a focus on the programming languages that are most representative for specific programming paradigms. Learning of basic principles of programming languages and different paradigms: C, C++, Prolog, Lisp, JavaScript.	
Educational outcomes (acquired knowledge): The students will be familiar with general and specific properties of different programming language paradigms, and to distinct which programming language belongs to a certain programming paradigm. Focus will be on object-oriented paradigm, procedural paradigm, logical paradigm, functional and script paradigms.	
Course content/structure Theoretical lecture	
Review of the development of software paradigm. Basic characteristic of most used software paradigms: procedural, object, logical, functional, concurrent and script. Comparison of the programming paradigms.	
Practice od general pr Problem solving of a C++(object-oriented par most suitable programm	s of programming languages through different programming paradigm. em using different programming languages C (procedural paradigm),), Prolog (logical paradigm) и JavaScript (script paradigm). Selection of the radigm for solvation of different problem types.

Literature

1. Tucker, A., Noonan, R. (2001): „Programming Languages: Principles and Paradigms", McGraw-Hill Science
2. Sebesta, R., (2006): „Concepts of programming languages", Addison Wesley (7th edition)
3. S. Barry Cooper, Benedikt Löwe, and Andrea Sorbi: New Computational Paradigms: Changing Conceptions of What is Computable, Springer Verlag, 2007.

Number of active teaching classes	Lectures: 2	Practical classes: 2
Teaching methods Lectures and laboratory practice are based on frontal, group methods, as well as using laboratory- experimental methods facilitating information communication technologies.		
Knowledge evaluation (maximum 100 points)		
Pre-examination obligations: Final exam: 20 Activity:10; Written exam: 20; Colloquium exam: 40; Seminary: $10 ;$		

Course:	Mobile computing
Course id.	
Number of ECTS: 8	
Teacher:	
Course status:	Precondition courses: Object oriented programming
Educational goal The primary goal of this course is to introduce students to the basic principles of mobile application development, with a focus on the Android platform. The secondary goal of this course is to gain experience and practical skills in the development and implementation of applications for Android mobile phones through work on practical projects. Among other things, another goal of the course is for students to acquire the necessary skills to conduct research activities in this dynamic area by exploiting existing environments and simulators, such as the Android Studio software package.	
Educational outcomes (acquired knowledge): The general competencies that students will acquire are analysis, synthesis and prediction of solutions and consequences, mastering research methods, procedures and processes, as well as applying knowledge in practice. The professional outcome of this course includes the following components: understanding the	
hardware and software platform of mobile devices; understanding the basic concepts of mobile application	
development - what are the basic characteristics, benefits and challenges, as well as understanding	
limitations such as limited battery life and the need to save energy; training for independent application of	
basic concepts of mobile applications and understanding of trade-offs in energy use and execution	
efficiency, in order to implement mobile applications that are robust, usable and efficient; training for	
independent application development for Android phones.	

Course content/structure:

Theoretical classes:

The role of mobile application development in the software industry. Features of mobile devices. An overview of hardware platforms and operating systems. Development environments and programming languages for mobile devices. Mobile application architecture. User interface development. Activity as a basic component of the Android application. Explicit and implicit intentions, fragments, application data storage (SQLite database, Shared Preferences). AsyncTask and Internet connection. Use an external API to retrieve data. Applications based on Content Provider and Broadcast Receiver components. Services for background work, work with sensors and application localization.

Practical classes:

Practical classes follow theoretical classes and are realized in computer classrooms. During the practical classes, students will gain insight into setting up the development environment, setting up emulators, as well as developing mobile applications for Android phones and the practical application of the principles adopted during the theoretical classes.

Literature

- R. Kamal:Mobile Computing, Oxford University Press, 2008.
- Jevtovic Milojko, Velickovic Zoran: Komunicacioni protokoli prepletenih slojeva, Akademska misao 2012
- James Tolbot, Justin Molean: Programiranje android aplikacija, CET 2014
- D. Griffiths, Head First Android Development, 2nd Edition, 2017, p. 928.
- G. Nudelman, Android Design Patterns: Interaction Design Solutions for Developers, Wiley, 2013, p. 459.
- E. Burnette, Hello, Android, Introducing Google's Mobile Development Platform, 4th Edition, Pragmatic• Programmers, 2015, p. 251.

Number of active teaching classes	Lectures: 3	Practical classes: 3
Teaching methods		
Teaching is performed using ICT, where in addition to classical teaching methods, modern presentation		
and demonstration tools and techniques are used, using an interactive method of working with students.		
Lectures and exercises are performed using didactic and educational content in electronic and digital form		
(which includes recorded lectures and mentoring exercises) on various video presentation media.		

Pre-examination obligations:
Colloquium exam: 20
Activity: 10
Project: 40
Exercise attendance:

Final exam:
Written exam:
Oral exam: 30

Educational outcomes (acquired knowledge):

Students will be able to independently teach computer science in primary and secondary schools.

Course content/structure:

Theoretical classes:

Preparation of classes. The structure of time. Time planning. Board planning. Teaching aids planning. Planning the required software. Planning the necessary data. Sequence of actions. Exposure speed. Tests and evaluation. Work with different ages. Didactics of IT contents. Operating system. Internet. Standard software packages: Word processing. Worksheets. Presentations. Database. Drawing. Computer center maintenance. Procurement of equipment. Equipment maintenance. Local area network. Software maintenance. Selected topics. Manual skills required. Independent student projects. Computer-assisted education in various fields. Educational software. Distance learning.

Practical classes:

Exercises, Other forms of teaching, Study research work, Preparation of necessary resources. Presentation of materials. Tests and evaluation. Discussions. Student work control. Practical practice of classes in school according to the contents of theoretical classes.

Literature

- N, Denić, Beleške sa predavanja u vidu skripte sa PowerPoint prezentacijama.
- Branković, D., Mandić, D.(2003): Metodika informatičkog obrazovanja. Beograd: Mediagraf, Banja Luka: Filozofski fakultet u Banjoj Luci.
- Mandić, P. i Mandić, D.(1997): Obrazovna informaciona tehnologija Učiteljski fakultet Beograd, Jagodina i Užice

Number of active teaching classes	Lectures: 3	Practical classes: 3

Teaching methods

The lectures use classical teaching methods with the use of modern technology. Illustrative examples are analysed in the exercises using classical teaching methods. Theoretical classes, theoretical and practical exercises, practical work in school.

Knowledge evaluation (maximum 100 points)

Pre-examination obligations:
Colloquium exam:
Final exam:
Written exam:
Activity: 10
Oral exam: 30

Seminar work: 30:
Work in school: 30:

Course:	Probability and statistics
Course id.	
Number of ECTS: 6	Dragiša Žunić
Teacher:	Mandatory, third year, sixth semester
Course status:	Erecondition courses: Mathematical Analysis 1, Combinatorics and Graph Theory
Educational goal Acquiring basic knowledge of probability theory and training for the application of that knowledge in solving problems from practice. Introduction to the basic methods of descriptive and analytical statistics and training for the application of these methods in solving problems in practice. Knowledge of probability theory is the basis for understanding the methods and models of statistical analysis	
Educational outcomes (acquired knowledge): At the end of the course, the successful student is expected to fully master the basic concepts and applications of probability and statistics. He is able to apply statistical tests and simulation methods to study real phenomena. Special emphasis is placed on understanding descriptive statistics and statistical inference.	
Course content/structure: Theoretical classes:	
Probability theory-space of elementary events. Definition of probability and basic properties. Conditional	
probability and independence of events. The formula of total probability. Bayesian formula. Random	
events, traits. Operations and relations with random events. One-dimensional random variables of discrete	
type. One-dimensional random variables of continuous type, parameters of a random variable. Discrete	
distribution models. Continuous distribution models. Boundary value theorems in probability. Two-	
dimensional random variables of discrete type. Two-dimensional random variables of continuous type.	
Marginal distributions. Conditional distributions. Regression analysis. Statistical inference, population,	
sample. Descriptive statistics, statistical features. Frequency distribution, graphical display of frequency	
distribution. Landmark parameters, indices. Statistics and their distributions. Evaluation theory,	
evaluation selection criteria. Confidence intervals. Hypothesis testing. Parametric tests. Nonparametric	
tests. Regression models. Methods of analysis of variance. Statistical packages (SPSS). Individual indices.	
Weighted and unweighted group indices. Time series analysis - moving average method. Autoregressive	
models.	

Practical classes:

Tasks in the above areas.

Literature

- Stojković, M. (2001). Statistika. Subotica: Ekonomski fakultet Subotica
- Stojković, H. M. (2002) Primena statistike - zbirka primera. Subotica
- Vuković, N. (2006): „Osnove verovatnoće", FON, Beograd,
- Vuković, N (2007): „Statističko zaključivanje", FON, Beograd
- Stojanović, V: „Statistika i verovatnoća - za nženjere"FIM, Beograd, 2012.

Number of active teaching classes	Lectures: 2	Practical classes: 2
Teaching methods		

The lectures use classical teaching methods with the use of modern technology. The principles of descriptive and analytical statistics are explained. Illustrative examples are analysed in the exercises using classical teaching methods. Computers solve problems by creating tasks in an appropriate environment.

Knowledge evaluation (maximum 100 points)

Pre-examination obligations:
Colloquium exam: 50
Activity: 10
Lecture attendance:
Exercise attendance:

Final exam:
Written exam: 20
Oral exam: 20

Course:	Artificial intelligence 1		
Course id.			
Number of ECTS: 7			
Teacher:	Mandatory, fourth year, seventh semester		
Course status:	Precondition courses: Programming 2, Introduction to Object Oriented Programming, Combinatorics and		
Graph Theory			Educational goal
:---			
Introduction to the basic concepts and algorithms of artificial intelligence, including their theoretical			
foundations, analysis and practical applications. Students will have the opportunity to understand and			
apply basic algorithms of supervised and unsupervised learning with examples of good practice and tips			
for applying these algorithms.			

Course content/structure:

Theoretical classes:

Introduction and basic concepts. Components of artificial intelligence systems and basic types of learning. Different types of machine learning problems. Basic concepts: goal function, overadjustment, regularization, performance evaluation, dimensionality problem, validation procedures, bias / variance compromise. Supervised learning (Bayesian learning theory, quadratic classifiers, parametric and nonparametric estimation of probability density (maximum likelihood and Bayesian estimation, KDE, kNN), linear and logistic regression, linear discriminant functions, neural networks, carrier vector method). Unsupervised learning (k-means, hierarchical clustering), dimensionality reduction: PCA and LDA.

Practical classes:

Computational exercises. Research project. Study research work.

Literature

- Crnojević, V, Prepoznavanje oblika za inženjere, Fakultet tehničkih nauka, Novi Sad, 2014.Bishop, C.M, Pattern Recognition and Machine Learning, Springer, New York, 2006.
- Richard O. Duda, Peter E.Hart, David G. Stork, Pattern Classification, 2nd Edition, Wiley, 2001.
- Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012.

Number of active teaching classes	Lectures: 2	Practical classes: 3
Teaching methods		
Lectures, computer exercises, seminar work, consultations, active learning, learning through project and		
research, workshops.		

Knowledge evaluation (maximum 100 points)

Pre-examination obligations:
Colloquium exam:
Activity: 10
Project: 30:
Seminar work: 20:

Final exam:
Written exam: 40
Oral exam:

Course:	Cyber security	
Course id.		
Number of ECTS: 7		
Teacher:	Milena V. Radenković, Milan G. Đorđević	
Course status:	Mandatory, fourth year, seventh semester	
Precondition courses: None		
Educational goal The aim of the course is to study the existing security problems of computer systems, such as and techniques and approaches that enable better protection of these systems and prevention of attacks.		
Educational outcomes (acquired knowledge): Mastering all aspects of security and protection of computer systems and networks.		
Course content/structure: The course covers the following areas: Introduction to Computer Systems Security, Security hardware, Software security, Network security, Mobile wireless network security, Web security, Privacy, Anonymity, Principles of cryptography.		
- Computer Security . Dieter Gollmann, 2nd edition (Amazon) - Security Engineering . Ross Anderson (Available online)		
Number of active teaching classes	Lectures: 3	Practical classes: 2
Teaching methods Lectures, tutorials, colloquia, consultations, tests, homework and written exams		
Knowledge evaluation (maximum 100 points)		
Pre-examination obligations: Colloquium exam: 30 Activity: 10 Seminar paper: 20: Exercise attendance:	Final exam Written ex Oral exam	

Course:	Signal processing
Course id.	
Number of ECTS: $\mathbf{8}$	Dejan Đukić
Teacher:	Elective, fourth year, seventh semester
Course status:	
Precondition courses: None	
Educational goal Introduction to the theoretical foundations and practical aspects necessary for the design of digital filters and training students to use appropriate hardware and software tools.	
Educational outcomes (acquired knowledge): Ability of the student to select an adequate circuit structure in order to meet the specifications of appropriate systems for digital signal processing, as well as the ability to implement an algorithm for digital signal processing in software or hardware.	
Course content/structure:	
Analysis of discrete signals and systems in the time and frequency domain. Fourier transform. Z	
transformation. Digital processing of continuous signals. Discrete Fourier transform (DFT). Fast Fourier	
Transform (FFT). Transmission functions and frequency responses. Digital filters of infinite impulse	
response (IIR). Digital filters of finite impulse response (FIR). Realization of digital filters. Discrete Random	
Signals DSP Processor Basics. Assembler, higher programming languages. Digital signal processing with	
different selection frequencies. Digital filter banks (QMF banks, multi-stage filter banks). Application of	
digital signal processing (spectral analysis of sinusoidal, non-stationary and random signals, music signal	
processing, digital music signal synthesis, signal compression, transmultiplexers, discrete multitone digital	
data transmission, converters with oversampling). Discrete Hilbert transformer. Adaptive filters	
(equalization of telecommunication channels, echo cancellation). Analysis and processing of DSP systems	
using Matlab software.	

Literature

- Lj. Milić, Z. Dobrosavljević, Uvod u digitalnu obradu signala, Akademska misao, 2004.
- Antoniou, Digital signal processing -signals, systems and filters, McGrawHill, 2006.
- 3. Vidosav Stojanović, Diskretne mreže i procesiranje signala:, Univerzitet u Nišu, Elektronski fakultet 2004.

Number of active teaching classes	Lectures: 3	Practical classes: 3
Teaching methods		

Lectures and exercises use frontal, group methods, as well as laboratory-experimental teaching methods with the use of modern technology.

Knowledge evaluation (maximum 100 points)

Pre-examination obligations:
Colloquium exam: 30
Final exam:
Written exam: 20
Activity: 10
Seminar paper: 20:
Exercise attendance:

Oral exam: 20

Course:	Mathematics teaching methodology
Course id: 19.0RNMAT	
Number of ECTS: 8	
Teacher:	Miroslava Mihajlov Carević
Course status:	Elective
Precondition courses: None	
Educational goal Acquiring knowledge in the field of mathematics teaching methodology and training students for their application.	
Educational outcomes (acquired knowledge): Enabling students to apply modern methodological principles, techniques of educational technology in the preparation and teaching of mathematics.	
Course content/structure Theoretical classes: Mathematics methodology. Psychological, pedagogical and log teaching mathematics. Mathema mathematics. Induction and deductio and place of the task in the teachi the methodology of solving tasks Problem-based learning, differenti teaching. Forms of work. Monitorin Planning in mathematics teaching. Practical classes: Exercises Written preparation of classes, de classes, analysis of the teaching pro	a scientific discipline and a school subject. Mathematics teaching bases of mathematics teaching. Forms of thinking in the process of al concepts and methods of their introduction into teaching n. An analogy. Teaching methods in mathematics teaching. The role of mathematics, their choice depending on the goals of teaching and Catalogue of Heuristic Rules Field. Teaching programming method. on and individualization. Classes and types of classes in mathematics and evaluation of students' work and results in mathematics teaching. tivation and encouragement for learning mathematics. nstration of classes and hospices in primary and secondary school ss and teaching.
1. Zech, F.: Grundkurs Mathematik didaktik - Theoretiche und praktis - che Anleitungen fur das Lehren und Lernen von Mathematik, Beltz Verlag - Weinheim und Basel, Berlin, 1999. 2. Marjanović, M.: Methodology of Mathematics I, Faculty of Teacher Education, Belgrade, 1996. 3. Marjanović, M.: Methodology of Mathematics II, Faculty of Teacher Education, Belgrade, 1996	
Number of active teaching classes	Lectures: 3 Practical classes: 3
The lectures use classical teaching methods with the use of modern technology. Illustrative examples are analysed in the exercises using classical teaching methods. Theoretical classes, theoretical and practical exercises, practical work in school. Analysis of written preparations for classes and demonstration of classes. Analysis of classes held in primary and secondary schools.	
Knowledge evaluation (maximum 100 points)	
Pre-examination obligations: Activity during the lecture: 10 Seminary work: 30 Lecture at school: 30	Oral exam: 30

Course:	Professional Practice (Internship)	
Course id:		
Number of ECTS: 3		
Teacher:	All of the teachers	
Course status:	Mandatory, fourth year, seventh semester	
Precondition courses: None		
Educational goal The aim of professional practice is to enable students to encounter specific problems in the field of computer science in actual situations, as well as to master certain practical knowledge related to that field.		
Educational outcomes (acquired knowledge): Upon completion of the internship, students will be able to understand the way to approach specific tasks and problems in the field of computing in real-life circumstances. Students will also have the opportunity to apply the knowledge and skills acquired in these studies in the practice		
Course content/structure The internship lasts a month and is realized in cooperation with other scientific and economic organizations that have a developed IT sector (primarily software companies). The student has the opportunity to choose the institution/company in which he/she will have professional practice, or in which he/she will apply the already acquired knowledge in practice. Employed students can also do an internship within the organization in which they are employed. Before starting the internship, the student agrees with the selected teacher, as a supervisor, on specific tasks to be performed during the internship. The student is obliged to keep records of their activities, and upon completion of the internship, to bring a certificate of completed internship, as well as to submit an appropriate report (Professional Practice Portfolio with completed assignments and appropriate documentation).		
Literature 4. Zech, F.: Grundkurs Mathematik didaktik - Theoretiche und praktis - che Anleitungen fur das Lehren und Lernen von Mathematik, Beltz Verlag - Weinheim und Basel, Berlin, 1999. 5. Marjanović, M.: Methodology of Mathematics I, Faculty of Teacher Education, Belgrade, 1996. 6. Marjanović, M.: Methodology of Mathematics II, Faculty of Teacher Education, Belgrade, 1996.		
Number of active teaching classes	Practical classes:	Other forms of classes: $6 \times 15=90$
Teaching methods Professional practice in a selected organization. The internship supervisor reviews the Professional Practice Portfolio and evaluates the student's knowledge through the defense of the practical work. The final output document is a record with a proposal of assessment and special observations and recommendations for the candidate in terms of support for career advancement.		
Knowledge evaluation (maximum 100 points)		
Pre-examination obligations: Professional practice in a selected institution/organization 30 Professional Practice Portfolio	Written exam Oral exam: Pres oral defence of pr	tation of completed tasks and ctical work 30

Course:	Computer networks
Course id.	
Number of ECTS: 6	
Teacher:	Aleksandar Zakić
Course status:	Mandatory, fourth year, eighth semester
Precondition courses: None	
Educational goal	

Acquiring general and specific knowledge of the theory and principles of functioning of computer networks, as well as introducing students to computer network applications.

Educational outcomes (acquired knowledge):

Upon completion of the course, the student has basic knowledge of computer networks, knows the basic principles, maintenance and principles of operation and is able to work on computer networks based on mastered principles and applications.

Course content/structure:

Introduction to the work program, assessment methods and exams. Computer-basic concepts. Layered architecture, OSI model, TCP / IP model. General terms related to computer communication. Client-server model. Connecting two computers, direct connection, modem connection. Connecting multiple computers, bus, star, tree and ring topologies. Local area networks. City networks. Broadband networks. Media access methods. Addressing. Protocols. Switching networks. Routing algorithms. Traffic congestion control algorithms. Computer networks and the Internet. Internet services. Network devices. IP addressing. Routing. BGP and adaptive routing. MPLS architecture. Protocols. Point-to-point and point-to-multipoint communication. Error detection and correction. Multiple approach techniques. QoS. Virtual private networks (L2, L3 and hybrid). Ethernet Metro. Optical networks. GMPLS. Networks with sensors. Triple play / IPTV.

Literature

Z. M. Urošević (2004), Uvod u računarske telekomunikacije i mreže, Tehnički fakultet, Čačak.
M. Stojčev (2005), Računarske mreže i prenos podataka, Elektronski fakultet, Niš.
R. Kurose, K. Ros, S. Košćal, R. Janković (2005), Umrežavanje računara, SET Beograd.
A. S. Tanenbaum (2003), Computer Networks, 4th ed. Prentice Hall PTR.
K. M. Sivalingham, S. Subramaniam (2005), Emerging Optical Network Technologies-Architectures, Protocols and Performance, Springer.
L. L. Peterson, B. S. Davie (2012), Computer Networks: A Systems Approach, 5th ed., Elsevier.

Number of active teaching classes	Lectures: 3	Practical classes: 2
Teaching methods Lectures and exercises use frontal, group methods, as well as laboratory-experimental teaching methods with the use of modern technology. Knowledge evaluation (maximum 100 points) Pre-examination obligations: Colloquium exam: 30 Activity: 10 Seminar paper: 20: Exercise attendance: \quad Written exam: 20		
	Oral exam: 20	

Course:	Artificial intelligence 2	
Course id:		
Number of		
Teacher:		
Course status:		
Precondition courses: Probability and Statistics, Artificial Intelligence 1		
Educational goal The course introduces students to advanced topics in the field of artificial intelligence, with special emphasis on the theoretical foundations of advanced techniques and tools for implementation. Topics related to specific modern techniques of supervised, unsupervised and semi-supervised learning are covered.		
Educational outcomes (acquired knowledge): Students will learn to interpret and connect various advanced algorithms and approaches to artificial intelligence. Scientists provide data, identify and select the most appropriate approaches, regularization techniques, as well as monitor the training process and adjust regularization parameters. Students will master the use of a number of software tools and machine learning algorithms.		
Course content/structure Neural networks: introduction, architectures and training procedures, evaluation and application. Group learning: bagging and boosting. Clustering-advanced algorithms, mixture-based models and the expectation maximization algorithm (EM). Genetic algorithms. Semi-supervised algorithms. Hidden Markov models. Probabilistic graphic models (inference, belief propagation, practical application). Practical teaching Computational exercises. Research project. Study research.		
Literature 1. Goodfellow, I, Bengio, Y, Courville, A, Deep Learning, MIT Press, Cambridge, 2017. 2. Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012. 3. Bishop, C M, Pattern Recognition and Machine Learning, Springer, New York, 2006. 4. Hastie, T, Tibshirani, R, Friedman, J, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, New York 2009. 5. Khanna, T, Foundations of Neural Networks, Addison-Wesley, Massachusetts, 1990.		
Number of active teaching classes	Lectures: 3	Practical classes: 3
Teaching methods Lectures, computer exercises, seminar work, consultations, active learning, learning through project and research, workshops.		
Knowledge evaluation (maximum 100 points)		
Pre-examination obligations: Activity:10; Project: 40; Seminar paper: 10;		

Course:	Computer graphics	
Course id.		

Number of ECTS: 7	
Teacher:	Milena V. Radenković
Course status:	Mandatory, fourth year, eighth semester
Precondition courses: None	
Educational goal	
The aim of the course is to master the theoretical and mathematical foundations of computer graphics, as	
well as the use of certain software applications in computer graphics.	
Educational outcomes (acquired knowledge): Students will be trained to use software tools in computer graphics as well as to work in graphic and design studies. They will also be able to follow technological advances in the field of computer graphics.	
Course content/structure:	
Theoretical classes:	
Introduction to computer graphics. Basic concepts. Vector and raster graphics. Colour models. Hardware	
components for graphic input and output. Graphical user interfaces (GUI). The place and role of models in	
computer graphics. Light sources. Camera model. Working with cameras. Coordinate systems in computer	
graphics. Geometric interpretation of two-dimensional graphic transformations translation, rotation,	
scaling, reflection, distortion). Transformations from the global coordinate system to the coordinate	
system of the plane of observation. Two-dimensional truncation (point truncation, line truncation, polygon	
truncation). Three-dimensional truncation. 2D and 3D graphics. 2D to 3D image conversion and vice versa.	
Work with different graphic formats and software applications.	

Practical classes:

Follows theoretical classes (work with vector and bitmap graphics, making flyers, posters, business cards, stickers, cover pages, prepress, work with software for 2D to 3D image conversion).

Literature

- J.Foley, A. Van Dam, S. Feiner, J. Hughes, Computer Graphics, Principles and Practice, Addison, Wesley, 1997.
- Starčević i ostali; Računarska grafika - praktikum za laboratorijske vežbe, VISER, Beograd 2009.
- Shalini Govil-Pai-Principles of Computer Graphics, Theory and Practice using OpenGL and Maya, Springer 2004.
- Watt, A., 3D Computer Graphics (3rd edition), Addison-Wesley, 2000.

Number of active teaching classes	Lectures: 3	Practical classes: 3
Teaching methods		
Knowledge evaluation (maximum 100 points)		
Pre-examination obligations:	Final exam:	
Colloquium exam: 40	Written exam: 40	
Activity: 10	Oral exam:	
Seminar work: 10:		
Exercise attendance:		

Course:		Computer vision			
Cours id.:					
Number of					
Teacher:		Kopanja S. Lazar			
Course Sta		mandatory, fuorth year, eighth semester			
Precondition courses: Mathematical analysis 2, Probability and statistics					
Educational goal The aim of the course is to provide a broad foundation in the field of computer image processing and analysis; to present technical solutions for obtaining digital images, to expose mathematical transformations and filtering of two-dimensional signals, algebraic, statistical methods, logical and morphological methods and methods of image analysis; to present some solutions in the domains of coding and summarizing visual information, modelling objects and the environment, object recognizing and drawing conclusions from static and dynamic images.					
Educationa Upon succes - make a dec - apply math - apply algeb - design and dynamic ima	tcome (acquire completion of the on the conditi tical transform , statistical and gram algorithm	wledge) se, students will be able recording digital images to two-dimensional functi ological methods to imag tomatic drawing of conclu		required quali extract importa s from particul	nents or details of static and
Introduction to optics and optical sensors for digital image acquisition, discretization and quantization; application of Fourier transform to two-dimensional functions; a review of some important integral transformations applied to image processing; application of algebraic transformations; application of statistical methods for the purpose of analysis and image processing; morphological analysis of images; separation of components from images, image segmentation; image compression; drawing conclusions from static and dynamic images. Practical classes					
Literature 1. R. Szeliski, 2. A. Zisserm 3. Computer 4. Acketa, D. Novom Sadu,	mputer Vision: C and R. Hartley, M on: A Modern A 86). Odabrana p rodno-matemat	er Vision: Algorithms an View Geometry in Comp h: David A. Forsyth, Jean a teorije prepoznavanja ultet	nd	lications, 2010. Vision, Cambrid e, Pearson Educ sa primenama.	sity Press, 2003. ited, 2011 Univerzitet u
Number of active teaching classes:					Other classes
Teaching methods Lectures and exercises use frontal and group method, as well as laboratory-experimental teaching method with the use of modern technology. The seminary paper is performed in the form of a development project, which is performed in groups and publicly defended.					
Knowledge evaluation (maximum 100 points)					
Pre obligat		points		exam	points
Lecture atte		10		art of the exam	20
Laboratory	cise attendance			n exam	20
Colloquia		20			
Seminars		30			

Course:	Final Thesis Subject	
Course id:		
Number of ECTS: 2		
Teacher: ${ }^{\text {a }}$ Supe	Supervisor	
Course status: ${ }^{\text {a }}$ Mand	Mandatory, fourth year, eighth semester	
Precondition courses: 210 ECTS credits		
Educational goal Preparation of students for independent research work on the final paper. With the help of a supervisor, the student observes, presents the methodology and solves a specific current problem with research methods, with the application of theoretical and applied knowledge acquired during the studies.		
Educational outcomes (acquired knowledge): By the end of the course, the student is introduced to the basic methods of scientific and professional work in the field of computer science and informatics. The student is able to use the acquired knowledge, to study and research topics in this scientific field.		
Course content/structure Science and scientific work. Problem and scientific problem. Hypothesis and hypothesis verification. Scientific observation and scientific experiment. General methodology of scientific calculation. Classification of research. Experimental research. Code of ethics for scientific research. The concept of authorship and intellectual property. Classification of scientific work. Citation. Review. Oral presentation. Presentation assistance. Writing professional and scientific paper.		
Literature 1. Zoran Popović: Kako napisati i publikovati naučno delo, Akademska misao, Beograd, 1999.		
Number of active teaching classes (weekly)	Lectures:	Practical classes: 6
Teaching methods Frontal, group, individual and practical method.		
Knowledge evaluation (maximum 100 points)		
Pre-examination obligations: Seminary: 30	Oral part	

